Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
VŨ THUỲ ANH
Xem chi tiết
Nguyễn Lê Phước Thịnh
18 tháng 8 2021 lúc 14:20

a: Ta có: \(\left(2x+3\right)^2+\left(2x-3\right)^2-2\left(4x^2-9\right)\)

\(=4x^2+12x+9+4x^2-12x+9-8x^2+18\)

\(=36\)

Bài 2: 

a: \(\left(y^2+6x^2\right)\left(y^2-6x^2\right)=y^4-36x^4\)

b: \(\left(4x+5\right)\left(16x^2-20x+25\right)=\left(16x^2-25\right)\left(4x-5\right)\)

\(=64x^3-16x^2-100x+125\)

Hoàng Việt
Xem chi tiết
An Phú 8C Lưu
23 tháng 11 2021 lúc 20:31

không có đáp án nào chính xác

mình nghĩ thế thôi

Akai Haruma
24 tháng 11 2021 lúc 9:07

Lời giải:
$16x^3y^2-24x^2y^3+20x^4=16x^2(xy^2-\frac{3}{2}y^3+\frac{5}{4}x^2)$

$\Rightarrow 16x^3y^2-24x^2y^3+20x^4\vdots 16x^2$

Đáp án C.

khanhhuyen6a5
Xem chi tiết
Diễm Quỳnh
17 tháng 6 2018 lúc 20:30

*\(\left(2x-3\right)^2=\left(x+5\right)^2\)

\(\Rightarrow\left(2x-3\right)^2-\left(x+5\right)^2=0\)

\(\Rightarrow\left(2x-3-x-5\right)\left(2x-3+x+5\right)=0\)

\(\Rightarrow\left(x-8\right)\left(3x+2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=8\\x=-\dfrac{2}{3}\end{matrix}\right.\)

Diễm Quỳnh
17 tháng 6 2018 lúc 20:26

* \(x^3-16x=0\)

\(\Rightarrow x\left(x^2-16\right)=0\)

\(\Rightarrow x\left(x^2-4^2\right)=0\)

\(\Rightarrow x\left(x-4\right)\left(x+4\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=4\\x=-4\end{matrix}\right.\)

Diễm Quỳnh
17 tháng 6 2018 lúc 20:26

*\(x^4-2x^3+10x^2-20x=0\)

\(\Rightarrow\left(x^4+10x^2\right)-\left(2x^3+20x\right)=0\)

\(\Rightarrow x^2\left(x^2+10\right)-2x\left(x^2+10\right)=0\)

\(\Rightarrow\left(x^2+10\right)\left(x^2-2x\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=\varnothing\\x=2\end{matrix}\right.\)

vu mai thu giang
Xem chi tiết
Hồ Thu Giang
6 tháng 8 2016 lúc 17:37

1, x(x - 5) - 4x + 20 = 0

=> x(x - 5) - 4(x - 5) = 0

=> (x - 4)(x - 5) = 0

=> x - 4 = 0 hoặc x - 5 = 0

=> x = 4 hoặc x = 5

=> x thuộc {4; 5}

2, 3(x + 1) + x(x + 1) 

= (3 + x)(x + 1)

3, 2x3 + x = 0

=> x(2x2 + 1) = 0

=> x = 0 hoặc 2x2 + 1 = 0

=> x = 0 hoặc 2x2 = -1

=> x = 0 hoặc x2 = -1/2 (vô lí vì x2 > hoặc = 0 với mọi x)

=> x = 0

4, x3 - 16x = 0

=> x(x2 - 16) = 0

=> x = 0 hoặc x2 - 16 = 0

=> x = 0 hoặc x2 = 16

=> x = 0 hoặc x = 4 hoặc x = -4

=> x thuộc {-4; 0; 4}

5, x2 + 6x = -9

=> x2 + 6x + 9 = 0

=> x2 + 2.3.x + 32 = 0

=> (x + 3)2 = 0

=> x + 3 = 0

=> x = -3

6, x4 - 2x3 + 10x2 - 20x = 0

=> x2(x2 + 10) - 2x(x2 + 10) = 0

=> (x2 + 2x)(x2 + 10) = 0

=> x(x +2)(x2 + 10) = 0

-TH1: x = 0

-TH2: x + 2 = 0 => x = -2

-TH3: x2 + 10 = 0 => x2 = -10 (vô lí vì x2 > hoặc = 0 với mọi x)

=> x thuộc {0; -2}

7, (2x - 3)2 = (x + 5)2

-TH1: 2x - 3 = x + 5

=> x = 8

- TH2: - 2x + 3 = x + 5

=> -3x = 2

=> x = \(\frac{-2}{3}\)

- TH3: 2x - 3 = - x - 5

=> 3x = -2

=> x = \(\frac{-2}{3}\)

- TH4: - 2x + 3 = - x - 5

=> -x = -8

=> x = 8`

=> x thuộc {\(\frac{-2}{3}\); 8}

see tình boi
Xem chi tiết
⭐Hannie⭐
12 tháng 1 2023 lúc 19:48

bị sang chấn tâm lí cái câu hỏi cụa bn ghê , tách `5->6` câu th bn:)

YangSu
12 tháng 1 2023 lúc 19:50

:v què tay hmu :<

Ngô Hải Nam
12 tháng 1 2023 lúc 19:52

từ bài 2 trở đi là lú rồi=)))

Lam Anh Ngọc
Xem chi tiết
Hang Vu
27 tháng 7 2023 lúc 20:22

chuyển vế sang r phân tích thành nhân tử, có thể dùng máy tính bỏ túi nhé bạn

 

câu 1: 9\(x^2\) + 12\(x\) + 5  =11

           (3\(x\))2 + 2.3.\(x\) .2 + 22 + 1 = 11

           (3\(x\) + 2)2      =  11 - 1

             (3\(x\) + 2)2    = 10

               \(\left[{}\begin{matrix}3x+2=\sqrt{10}\\3x+2=-\sqrt{10}\end{matrix}\right.\)

                \(\left[{}\begin{matrix}3x=\sqrt{10}-2\\3x=-\sqrt{10}-2\end{matrix}\right.\)

                  \(\left[{}\begin{matrix}x=\dfrac{\sqrt{10}-2}{3}\\x=\dfrac{-\sqrt{10}-2}{3}\end{matrix}\right.\)

                 Vậy S = {\(\dfrac{-\sqrt{10}-2}{3}\); \(\dfrac{\sqrt{10}-2}{3}\)

  Câu 2: 6\(x^2\) + 16\(x\) + 12 = 2\(x^2\)

              6\(x^2\) + 16\(x\) + 12 - 2\(x^2\) = 0

              4\(x^2\) + 16\(x\) + 12 = 0

              (2\(x\))2 + 2.2.\(x\).4 + 16 - 4 = 0

               (2\(x\) + 4)2   = 4

               \(\left[{}\begin{matrix}2x+4=2\\2x+4=-2\end{matrix}\right.\) 

                \(\left[{}\begin{matrix}2x=-2\\2x=-6\end{matrix}\right.\)

                 \(\left[{}\begin{matrix}x=-1\\x=-3\end{matrix}\right.\)

              S = { -3; -1}

3, 16\(x^2\) + 22\(x\) + 11 = 6\(x\) + 5

    16\(x^2\) + 22\(x\) - 6\(x\)  + 11 - 5 = 0

     16\(x^2\) + 16\(x\) + 6 = 0

      (4\(x\))2 + 2.4.\(x\) . 2 + 22 + 2 = 0

       (4\(x\) + 2)2 + 2 = 0 (1) 

Vì (4\(x\)+ 2)2 ≥ 0 ∀ ⇒ (4\(x\) + 2)2 + 2 > 0 ∀ \(x\) vậy (1) Vô nghiệm

             S = \(\varnothing\)

Câu 4. 12\(x^2\) + 20\(x\) + 10 = 3\(x^2\) - 4\(x\) 

            12\(x^2\) + 20\(x\) + 10 - 3\(x^2\) + 4\(x\) = 0

            9\(x^2\) + 24\(x\) + 10 = 0

           (3\(x\))2 + 2.3.\(x\).4 + 16 - 6 = 0

          (3\(x\) + 4)2 = 6

            \(\left[{}\begin{matrix}3x+4=\sqrt{6}\\3x+4=-\sqrt{6}\end{matrix}\right.\)

              \(\left[{}\begin{matrix}3x=-4+\sqrt{6}\\3x=-4-\sqrt{6}\end{matrix}\right.\)

              \(\left[{}\begin{matrix}x=\dfrac{\sqrt{6}-4}{3}\\x=-\dfrac{\sqrt{6}+4}{3}\end{matrix}\right.\)

                    S = {\(\dfrac{-\sqrt{6}-4}{3}\)\(\dfrac{\sqrt{6}-4}{3}\)}

                     

            

Lam Anh Ngọc
Xem chi tiết
Nguyễn Đức Trí
11 tháng 8 2023 lúc 20:57

a) \(4x^2+16x+3=0\)

\(\Delta'=84-12=72\Rightarrow\sqrt[]{\Delta'}=6\sqrt[]{2}\)

Phương trình có 2 nghiệm

\(\left[{}\begin{matrix}x=\dfrac{-8+6\sqrt[]{2}}{4}\\x=\dfrac{-8-6\sqrt[]{2}}{4}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-2\left(4-3\sqrt[]{2}\right)}{4}\\x=\dfrac{-2\left(4+3\sqrt[]{2}\right)}{4}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-\left(4-3\sqrt[]{2}\right)}{2}\\x=\dfrac{-\left(4+3\sqrt[]{2}\right)}{2}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3\sqrt[]{2}-4}{2}\\x=\dfrac{-3\sqrt[]{2}-4}{2}\end{matrix}\right.\)

b) \(7x^2+16x+2=1+3x^2\)

\(4x^2+16x+1=0\)

\(\Delta'=84-4=80\Rightarrow\sqrt[]{\Delta'}=4\sqrt[]{5}\)

Phương trình có 2 nghiệm

\(\left[{}\begin{matrix}x=\dfrac{-8+4\sqrt[]{5}}{4}\\x=\dfrac{-8-4\sqrt[]{5}}{4}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-4\left(2-\sqrt[]{5}\right)}{4}\\x=\dfrac{-4\left(2+\sqrt[]{5}\right)}{4}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\left(2-\sqrt[]{5}\right)\\x=-\left(2+\sqrt[]{5}\right)\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=-2+\sqrt[]{5}\\x=-2-\sqrt[]{5}\end{matrix}\right.\)

c) \(4x^2+20x+4=0\)

\(\Leftrightarrow4\left(x^2+5x+1\right)=0\)

\(\Leftrightarrow x^2+5x+1=0\)

\(\Delta=25-4=21\Rightarrow\sqrt[]{\Delta}=\sqrt[]{21}\)

Phương trình có 2 nghiệm

\(\left[{}\begin{matrix}x=\dfrac{-5+\sqrt[]{21}}{2}\\x=\dfrac{-5-\sqrt[]{21}}{2}\end{matrix}\right.\)

tràn thị trúc oanh
Xem chi tiết
T.Thùy Ninh
23 tháng 7 2017 lúc 15:04

\(a,x^3-16x=0\)

\(\Leftrightarrow x\left(x^2-16\right)=0\)

\(\Leftrightarrow x\left(x-4\right)\left(x+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-4=0\\x+4=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=4\\x=-4\end{matrix}\right.\)

\(b,x^4-2x^3+10x^2-20x=0\)

\(\Leftrightarrow x^3\left(x-2\right)+10x\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^3+10x\right)=0\)

\(\Leftrightarrow\left(x-2\right)x\left(x^2+10\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x=0\\x^2+10=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\\x=0\\\left[{}\begin{matrix}x^2=10\\x^2=-10\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\\x=0\\x=\sqrt{10}\\x=-\sqrt{10}\end{matrix}\right.\)\(c,\left(2x-1\right)^2=\left(x+3\right)^2\)

\(\Leftrightarrow4x^2-4x+1=x^2+6x+9\)

\(\Leftrightarrow4x^2-4x+1-x^2-6x-9=0\)

\(\Leftrightarrow3x^2-10x-8=0\)

\(\Leftrightarrow3x^2-12x+2x-8=0\)

\(\Leftrightarrow3x\left(x-4\right)+2\left(x-4\right)=0\)

\(\Leftrightarrow\left(3x-2\right)\left(x-4\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}3x-2=0\\x-4=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-\dfrac{2}{3}\\x=4\end{matrix}\right.\)

Phần d tương tự

DƯƠNG PHAN KHÁNH DƯƠNG
23 tháng 7 2017 lúc 15:25

Câu a :

\(x^3-16x=0\)

\(\Leftrightarrow x\left(x^2-4^2\right)=0\)

\(\Leftrightarrow x\left[\left(x+4\right)\left(x-4\right)\right]=0\)

\(\Rightarrow\) \(x=0\)

\(\Rightarrow\) \(x+4=0\Rightarrow x=-4\)

\(\Rightarrow x-4=0\Rightarrow x=4\)

Câu b :

\(x^4-2x^3+10x^2-20x=0\)

\(\Leftrightarrow x^3\left(x-2\right)+10x\left(x-2\right)\) \(=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^3+10x\right)=0\)

\(\Leftrightarrow x\left(x-2\right)\left(x^2+10\right)=0\)

\(\Rightarrow x=0\)

\(\left(x-2\right)=0\Rightarrow x=2\)

\(x^2+10=0\) \(\Rightarrow\) x ( loại )

Quân Nguyễn
Xem chi tiết
Gia Huy
11 tháng 7 2023 lúc 9:10

a

ĐK:

 \(3-x\ge0\\ \Leftrightarrow x\le3\)

\(\sqrt{x^2-3x+2}=3-x\\ \Leftrightarrow x^2-3x+2=\left(3-x\right)^2=9-6x+x^2\\ \Leftrightarrow x^2-3x+2-9+6x-x^2=0\\ \Leftrightarrow3x=7\\ \Leftrightarrow x=\dfrac{7}{3}\left(nhận\right)\)

Thử lại: \(\sqrt{\left(\dfrac{7}{3}\right)^2-3.\dfrac{7}{3}+2}=\dfrac{2}{3}>0\)

Vậy phương trình có nghiệm duy nhất \(x=\dfrac{7}{3}\)

b

\(\sqrt{4x^2-20x+25}=\sqrt{\left(2x\right)^2-2.2x.5+5^2}=\sqrt{\left(2x-5\right)^2}=\left|2x-5\right|\)

Phương trình trở thành:

\(\left|2x-5\right|+2x=5\) (1)

Với \(x< \dfrac{5}{2}\) thì (1) \(\Leftrightarrow5-2x+2x=5\Leftrightarrow5=5\) 

=> Với \(x< \dfrac{5}{2}\) thì phương trình có nghiệm với mọi x \(< \dfrac{5}{2}\) (I)

Với \(x\ge\dfrac{5}{2}\) thì (1)

 \(\Leftrightarrow2x-5+2x=5\\ \Leftrightarrow2x-5+2x-5=0\\ \Leftrightarrow4x=10\\ \Leftrightarrow x=\dfrac{10}{4}=\dfrac{5}{2}\left(nhận\right)\left(II\right)\)

Từ (I), (II) kết luận phương trình có nghiệm với mọi \(x\le\dfrac{5}{2}\)

c

\(\Leftrightarrow\left|3-2x\right|=4\) (1)

Nếu \(x\le\dfrac{3}{2}\) thì (1)

\(\Leftrightarrow3-2x=4\\ \Leftrightarrow2x=-1\\ \Leftrightarrow x=-\dfrac{1}{2}\left(nhận\right)\)

Nếu \(x>\dfrac{3}{2}\) thì (1)

\(\Leftrightarrow2x-3=4\\ \Leftrightarrow2x=7\\ \Leftrightarrow x=\dfrac{7}{2}\left(nhận\right)\)

Vậy phương trình có 2 nghiệm \(S=\left\{-\dfrac{1}{2};\dfrac{7}{2}\right\}\)

Nguyễn Lê Phước Thịnh
11 tháng 7 2023 lúc 8:47

a: =>x^2-3x+2=x^2-6x+9 và x<=3

=>3x=7 và x<=3

=>x=7/3(loại)

b: =>|2x-5|=5-2x

=>2x-5<=0

=>x<=5/2

c: =>|2x-3|=4

=>2x-3=4 hoặc 2x-3=-4

=>x=-1/2 hoặc x=7/2