Giải pt
(\(\sqrt{x+5}-\sqrt{x+2}\)) (\(1+\sqrt{x^2+7x+10}\)) = 3
Giải PT: \(\left(\sqrt{x+5}-\sqrt{x+2}\right).\left(1+\sqrt{x^2+7x+10}\right)=3\)
\(\left(\sqrt{x+5}-\sqrt{x+2}\right)\left(1+\sqrt{x^2+7x+10}\right)=3\left(đk:x\ge-2\right)\)
Đặt \(a=\sqrt{x+5},b=\sqrt{x+2}\left(đk:a,b\ge0,a\ne b\right)\)
\(\Rightarrow\left\{{}\begin{matrix}ab=\sqrt{\left(x+5\right)\left(x+2\right)}=\sqrt{x^2+7x+10}\\a^2-b^2=x+5-x-2=3\end{matrix}\right.\)
PT trở thành: \(\left(a-b\right)\left(1+ab\right)=a^2-b^2\)
\(\Leftrightarrow\left(a-b\right)\left(ab+1\right)=\left(a-b\right)\left(a+b\right)\)
\(\Leftrightarrow\left(a-b\right)\left(ab+1-a-b\right)=0\)
\(\Leftrightarrow\left(a-b\right)\left(b-1\right)\left(a-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=b\left(loại\right)\\a=1\\b=1\end{matrix}\right.\)
+ Với a=1
\(\Rightarrow\sqrt{x+5}=1\Leftrightarrow x+5=1\Leftrightarrow x=-4\left(ktm\right)\)
+ Với b=1
\(\Rightarrow\sqrt{x+2}=1\Leftrightarrow x+2=1\Leftrightarrow x=-1\left(tm\right)\)
Vậy \(S=\left\{-1\right\}\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x+5}=a\\\sqrt{x+2=b}\end{matrix}\right.\)
Thì được:
\(\left(a-b\right)\left(1+ab\right)=a^2-b^2\)
\(\Leftrightarrow\left(a-1\right)\left(b-1\right)\left(a-b\right)=0\)
Làm tiếp
\(ĐK:x\ge-2\)
\(PT\Leftrightarrow\dfrac{x+5-x-2}{\sqrt{x+5}+\sqrt{x+2}}\left(1+\sqrt{x^2+7x+10}\right)=3\\ \Leftrightarrow\dfrac{3\left(1+\sqrt{\left(x+5\right)\left(x+2\right)}\right)}{\sqrt{x+5}+\sqrt{x+2}}=3\\ \Leftrightarrow1+\sqrt{\left(x+5\right)\left(x+2\right)}=\sqrt{x+5}+\sqrt{x+2}\\ \Leftrightarrow\left(\sqrt{x+5}-1\right)\left(1-\sqrt{x+2}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}\sqrt{x+5}=1\\\sqrt{x+2}=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x+5=1\\x+2=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\left(ktm\right)\\x=-1\left(tm\right)\end{matrix}\right.\\ \Leftrightarrow x=-1\)
Giải PT: \(\left(\sqrt{x+2}-\sqrt{x-2}\right).\left(1+\sqrt{x^2+7x+10}\right)=3\)
giải pt
\(\left(\sqrt{x+5}-\sqrt{x+2}\right)\left(1+\sqrt{x^2+7x+10}\right)=3\)
Đk x>= -2
Đặt \(\sqrt{x+5}=a;\sqrt{x+2}=b\Rightarrow\sqrt{x^2+7x+10}=a+b;a^2-b^2=x+5-x-2=3\)
pt <=> \(\left(a-b\right)\left(1+ab\right)=a^2-b^2\)
<=> \(\left(a-b\right)\left(ab+1\right)=\left(a-b\right)\left(a+b\right)\)
<=> \(\left(a-b\right)\left(ab+1\right)-\left(a-b\right)\left(a+b\right)=0\)
<=> \(\left(a-b\right)\left(ab+1-a-b\right)=0\)
<=> \(\left(a-b\right)\left(b-1\right)\left(a-1\right)=0\)
=> a = b hoặc b = 1 hoặc a = 1
(+) a = b => x + 5 = x +2 => 0x = -3 (loại )
(+) a = 1 => x + 5 = 1 => x = -4 (loại )
(+) b = 1 => x + 2 = 1=> x = -1 ( TM)
Vậy x = -1 là nghiệm của pt
giải pt :
a,\(3\sqrt{x^2+4x-5}+\sqrt{x-3}=\sqrt{11x^2+25x+2}\)
b,\(\sqrt{5x^2+14x+9}-5\sqrt{x+1}=\sqrt{x^2-x-2}\)
c, \(x^2-8x+17=3\sqrt{x^3-7x+6}\)
giải pt :
a, \(x^2-4x-2=2\sqrt{x^3+1}\)
b, \(x^2-7x+1=4\sqrt{x^4+x^2+1}\)
c, \(3\sqrt{x^2+4x-5}+\sqrt{x-3}=\sqrt{11x^2+25+2}\)
giải pt \(\sqrt{x+3}+\sqrt{10-x}=x^2-7x+11\)
đk -3 =< x =< 10
\(\sqrt{x+3}-2+\sqrt{10-x}-3=x^2-7x+6\)
\(\Leftrightarrow\dfrac{x+3-4}{\sqrt{x+3}+2}+\dfrac{10-x-9}{\sqrt{10-x}+3}=\left(x-6\right)\left(x-1\right)\)
\(\Leftrightarrow\dfrac{x-1}{\sqrt{x+3}+2}+\dfrac{1-x}{\sqrt{10-x}+3}=\left(x-6\right)\left(x-1\right)\)
\(\Leftrightarrow\left(x-1\right)\left(\dfrac{1}{\sqrt{x+3}+2}-\dfrac{1}{\sqrt{10-x}+3}-x+6\ne0\right)=0\Leftrightarrow x=1\)(tm)
giải pt : \(3\sqrt{3x-2}+6\sqrt{x-1}=7x-10+4\sqrt{3x^2-5x+2}\)
ĐK: \(x\ge1\)
Đặt \(\sqrt{3x-2}+2\sqrt{x-1}=t\left(t\ge1\right)\)
\(pt\Leftrightarrow3t=t^2-4\)
\(\Leftrightarrow t^2-3t-4=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=4\\t=-1\left(l\right)\end{matrix}\right.\)
\(t=4\Leftrightarrow\sqrt{3x-2}+2\sqrt{x-1}=4\)
\(\Leftrightarrow7x-6+4\sqrt{\left(3x-2\right)\left(x-1\right)}=16\)
\(\Leftrightarrow4\sqrt{3x^2-5x+2}=22-7x\)
\(\Leftrightarrow\left\{{}\begin{matrix}48x^2-80x+32=484+49x^2-308x\\22-7x\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}452+x^2-228x=0\\x\le\dfrac{22}{7}\end{matrix}\right.\)
\(\Leftrightarrow x=2\left(tm\right)\)
giải pt
(\(\sqrt{x+5}\) - \(\sqrt{x-2}\) ) (1+\(\sqrt{x^2+7x+10}\))=3
giải pt :
a, \(\sqrt{3x^2-7x+3}+\sqrt{x^2-3x+4}=\sqrt{3x^2-5x-1}+\sqrt{x^2-2}\)
b, \(\sqrt{x}+\sqrt{3-x}=x^2-x-2\)
c, \(\sqrt{x+6}+\sqrt{x-1}=x^2-1\)