Cho a,b,c dương thỏa mãn điều kiện \(a^2+b^2+c^2=1\)
Tìm \(P_{max}=a^2b^3c^3\)
1) Cho các số thực \(a,b,c\) thỏa mãn \(a^3+b^3+c^3=3abc\) và \(a+b+c\ne0\)
Tính giá trị: \(P=\dfrac{a^2+2b^2+3c^2}{3a^2+2b^2+c^2}\)
2) Tìm các số dương \(x,y\) thỏa mãn: \(3^x=y^2+2y\)
1) \(\left\{{}\begin{matrix}a^3+b^3+c^3=3abc\\a+b+c\ne0\end{matrix}\right.\) \(\left(a;b;c\in R\right)\)
Ta có :
\(a^3+b^3+c^3\ge3abc\) (Bất đẳng thức Cauchy)
Dấu "=" xảy ra khi và chỉ khi \(a=b=c=1\left(a^3+b^3+c^3=3abc\right)\)
Thay \(a=b=c\) vào \(P=\dfrac{a^2+2b^2+3c^2}{3a^2+2b^2+c^2}\) ta được
\(\Leftrightarrow P=\dfrac{6a^2}{6a^2}=1\)
\(3^x=y^2+2y\left(x;y>0\right)\)
\(\Leftrightarrow3^x+1=y^2+2y+1\)
\(\Leftrightarrow3^x+1=\left(y+1\right)^2\left(1\right)\)
- Với \(\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)
\(pt\left(1\right)\Leftrightarrow3^0+1=\left(0+1\right)^2\Leftrightarrow2=1\left(vô.lý\right)\)
- Với \(\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)
\(pt\left(1\right)\Leftrightarrow3^1+1=\left(1+1\right)^2=4\left(luôn.luôn.đúng\right)\)
- Với \(x>1;y>1\)
\(\left(y+1\right)^2\) là 1 số chính phương
\(3^x+1=\overline{.....1}+1=\overline{.....2}\) không phải là số chính phương
\(\Rightarrow\left(1\right)\) không thỏa với \(x>1;y>1\)
Vậy với \(\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\) thỏa mãn đề bài
cho a , b là các số thực dương thỏa mãn điều kiện 2b ≤ ab+4
Tìm max P = \(\dfrac{ab}{a^2+b^2}\)
Thầy lâm giúp em bài này với
Lời giải:
Áp dụng BĐT AM-GM:
$P\leq \frac{ab}{2\sqrt{a^2b^2}}=\frac{ab}{2ab}=\frac{1}{2}$
Dấu "=" xảy ra khi $a=b$ (thay vào điều kiện $2b\leq ab+4\Leftrightarrow a^2+4\geq 2a$- cũng luôn đúng)
Cho a, b, c là 3 số thực dương thỏa mãn: a+2b+3c=3. Tìm GTNN của biểu thức: \(Q=\dfrac{a+1}{1+4b^2}+\dfrac{2b+1}{1+9c^2}+\dfrac{3c+1}{1+a^2}\)
Đặt \(\left(a;2b;3c\right)=\left(x;y;z\right)\Rightarrow x+y+z=3\)
\(Q=\dfrac{x+1}{1+y^2}+\dfrac{y+1}{1+z^2}+\dfrac{z+1}{1+x^2}\)
Ta có:
\(\dfrac{x+1}{1+y^2}=x+1-\dfrac{\left(x+1\right)y^2}{1+y^2}\ge x+1-\dfrac{\left(x+1\right)y^2}{2y}=x+1-\dfrac{\left(x+1\right)y}{2}\)
Tương tự:
\(\dfrac{y+1}{1+z^2}\ge y+1-\dfrac{\left(y+1\right)z}{2}\) ; \(\dfrac{z+1}{1+x^2}\ge z+1-\dfrac{\left(z+1\right)x}{2}\)
Cộng vế:
\(Q\ge\dfrac{x+y+z}{2}+3-\dfrac{1}{2}\left(xy+yz+zx\right)\)
\(Q\ge\dfrac{x+y+z}{2}+3-\dfrac{1}{6}\left(x+y+z\right)^2=\dfrac{3}{2}+3-\dfrac{9}{6}=3\)
\(Q_{min}=3\) khi \(x=y=z=1\) hay \(\left(a;b;c\right)=\left(1;\dfrac{1}{2};\dfrac{1}{3}\right)\)
cho a , b , c là 3 só thực dương thỏa mãn : a + 2b + 3c = 1 . Tìm max của \(P=\frac{6bc}{\sqrt{a+6bc}}+\frac{3ac}{\sqrt{2b+3ac}}+\frac{2ab}{\sqrt{3c+2ab}}\)
Dặt x=a, y=2b,z=3c
Khi đó
\(P=\frac{yz}{\sqrt{x+yz}}+\frac{xz}{\sqrt{y+xz}}+\frac{xy}{\sqrt{z+xy}}\)và x+y+z=1
Ta có \(\frac{yz}{\sqrt{x+yz}}=\frac{yz}{\sqrt{x\left(x+y+z\right)+yz}}=\frac{yz}{\sqrt{\left(x+y\right)\left(x+z\right)}}\le\frac{1}{2}yz\left(\frac{1}{x+y}+\frac{1}{x+z}\right)\)
=> \(P\le\frac{1}{2}\left(\frac{xz}{x+y}+\frac{yz}{x+y}\right)+\frac{1}{2}\left(\frac{xy}{y+z}+\frac{xz}{y+z}\right)+...=\frac{1}{2}\left(x+y+z\right)\)
\(=\frac{1}{2}\)
Vậy \(MaxP=\frac{1}{2}\)khi x=y=z=1/3 hay \(\hept{\begin{cases}a=\frac{1}{3}\\b=\frac{1}{6}\\c=\frac{1}{9}\end{cases}}\)
c) Với a, b, c là các số dương thỏa mãn điều kiện a + b + c = 2. Tìm max Q = \(\sqrt{2a+bc}+\sqrt{2b+ca}+\sqrt{2c+ab}\)
Áp dụng Côsi:
\(2.\frac{4}{3}.\sqrt{2a+bc}\le\left(\frac{4}{3}\right)^2+2a+bc\)
Tương tự: \(2.\frac{4}{3}\sqrt{2b+ca}\le\frac{16}{9}+2b+ca;2.\frac{4}{3}\sqrt{2c+ab}\le\frac{16}{9}+2c+ab\)
\(\Rightarrow\frac{8}{3}Q\le\frac{16}{3}+2\left(a+b+c\right)+bc+ca+ab=\frac{28}{3}+ab+bc+ca\)
Ta có: \(3\left(ab+bc+ca\right)=2\left(ab+bc+ca\right)+ab+bc+ca\)
\(\le2\left(ab+bc+ca\right)+a^2+b^2+c^2=\left(a+b+c\right)^2=4\)
\(\Rightarrow ab+bc+ca\le\frac{4}{3}\)
\(\Rightarrow\frac{8}{3}Q\le\frac{28}{3}+\frac{4}{3}=\frac{32}{3}\Rightarrow Q\le4\)
Dấu "=" xảy ra khi và chỉ khi \(a=b=c=\frac{2}{3}\)
chứng minh rằng nếu a b c là các số không âm thỏa mãn cấc điều kiện sau a+3c=8,a+2b=9 thì N=a+b-c-17/2 là các số không dương. tìm a b c để N bằng 0
a+3c +a+2b = 17
=>2a +2b +3c = 17
=>2.(a+b)+3c=17
=>a+b+3c/2=17/2
=> N= a+b-c-17/2=a+b-c-a-b -3c/2=-c-3c/2
=> N là các số không âm
cho a,b,c là các số thực dương thỏa mãn \(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{a+c}=2017\)
Tìm max \(P=\dfrac{1}{2a+3b+3c}+\dfrac{1}{3a+2b+3c}+\dfrac{1}{3a+3b+2c}\)
Cho a,b,c dương thỏa mãn điều kiện \(a^2b^2c^2+\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge a+b+c+ab+bc+ca+3\)
Tìm GTNN của biểu thức:
\(P=\frac{a^3}{\left(b+2c\right)\left(2c+3a\right)}+\frac{b^3}{\left(c+2a\right)\left(2a+3b\right)}+\frac{c^3}{\left(a+2b\right)\left(2b+3c\right)}\)
\(a^2b^2c^2+\left(a+1\right)\left(1+b\right)\left(1+c\right)\ge a+b+c+ab+bc+ca+3\)
\(\Leftrightarrow\left(abc\right)^2+abc-2\ge0\Leftrightarrow\left(abc+2\right)\left(abc-1\right)\ge0\Leftrightarrow abc\ge1\)
Áp dụng BĐT Cosi ta có:
\(\frac{a^3}{\left(b+2c\right)\left(2c+3a\right)}+\frac{b+2c}{45}+\frac{2c+3a}{75}\ge3\sqrt[3]{\frac{a^3}{\left(b+2c\right)\left(2c+3b\right)}\cdot\frac{b+2c}{45}\cdot\frac{2c+3a}{75}}=\frac{a}{5}\left(1\right)\)
Tương tự ta có: \(\hept{\begin{cases}\frac{b^3}{\left(c+2a\right)\left(2a+3b\right)}+\frac{c+2a}{45}+\frac{2a+3b}{75}\ge\frac{b}{5}\left(2\right)\\\frac{c^3}{\left(a+2b\right)\left(2b+3c\right)}+\frac{a+2b}{45}+\frac{2b+3c}{75}\ge\frac{c}{5}\left(3\right)\end{cases}}\)
Từ (1)(2)(3) ta có:
\(P+\frac{2\left(a+b+c\right)}{15}\ge\frac{a+b+c}{5}\Leftrightarrow P\ge\frac{1}{15}\left(a+b+c\right)\)
Mà \(a+b+c\ge3\sqrt[3]{abc}\Rightarrow S\ge\frac{1}{5}\)
Dấu "=" xảy ra <=> a=b=c=1
đây\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\)
2 bài bất đẳng thức,theo cảm nghĩ của em thì khá là hay.
1
Cho a,b,c dương thỏa mãn \(a^2+b^2+c^2=6\) Tìm:\(P_{min}=\frac{a}{bc}+\frac{2b}{ca}+\frac{5c}{ab}\)
2
Cho x,y,z thỏa mãn \(x,y,z\ge1;x+y+z=5\)
Tìm \(P_{max}=\frac{1-2x}{x^3+7x-y-z+1}+\frac{1-2y}{y^3+7y-z-x+1}+\frac{1-2z}{z^3+7z-x-y+1}\)
Bài 1 quan trong là đoán dấu đẳng thức.
1/ Có: \(36=\left(3+2+1\right)\left(a^2+b^2+c^2\right)\ge\left(\sqrt{3}a+\sqrt{2}b+c\right)^2\)
\(\therefore\sqrt{3}a+\sqrt{2}b+c\le6\)
\(\frac{1}{3}\left(\frac{a}{bc}+\frac{3b}{2ca}\right)+\frac{3}{2}\left(\frac{b}{ca}+\frac{2c}{ab}\right)+2\left(\frac{c}{ab}+\frac{a}{3bc}\right)\)
\(\ge\frac{\sqrt{6}}{3c}+\frac{3\sqrt{2}}{a}+\frac{4\sqrt{3}}{3b}\)
\(=\frac{\left(\frac{\sqrt{6}}{3}\right)}{c}+\frac{\left(3\sqrt{6}\right)}{\sqrt{3}a}+\frac{\left(\frac{4\sqrt{6}}{3}\right)}{\sqrt{2}b}\)
\(\ge\frac{\left(\sqrt{\frac{\sqrt{6}}{3}}+\sqrt{3\sqrt{6}}+\sqrt{\frac{4\sqrt{6}}{3}}\right)^2}{\sqrt{3}a+\sqrt{2}b+c}\ge2\sqrt{6}\)
Đẳng thức xảy ra khi \(a=\sqrt{3},b=\sqrt{2},c=1\)
Hiếm hoi thấy anh tth làm bất ko dùng sos
Tại bài này SOS làm biếng thôi em, lằng nhằng lắm