Giair phương trình: \(\sqrt{x+1}=x-2\)
Giair phương trình: \(x+\dfrac{x}{\sqrt{x^2-1}}=2\sqrt{2}\)
ĐKXĐ: \(\left[{}\begin{matrix}x< -1\\x>1\end{matrix}\right.\)
- Với \(x< -1\Rightarrow VT< 0< 2\sqrt{2}\Rightarrow\) ptvn
- Với \(x>1\), bình phương 2 vế:
\(x^2+\dfrac{x^2}{x^2-1}+\dfrac{2x^2}{\sqrt{x^2-1}}=8\)
\(\Leftrightarrow\dfrac{x^4}{x^2-1}+2\sqrt{\dfrac{x^4}{x^2-1}}-8=0\)
Đặt \(\sqrt{\dfrac{x^4}{x^2-1}}=t>0\)
\(\Rightarrow t^2+2t-8=0\Rightarrow\left[{}\begin{matrix}t=2\\t=-4\left(loại\right)\end{matrix}\right.\)
\(\Rightarrow\dfrac{x^4}{x^2-1}=4\Rightarrow x^4-4x^2+4=0\)
\(\Rightarrow x^2=2\Rightarrow x=\sqrt{2}\)
Giair phương trình
\(\sqrt{x^2-3x+2}+\sqrt{x+3}=\sqrt{x-1}+\sqrt{x^2+x-6}\)
ĐKXĐ: \(x\ge2\)
\(\sqrt{\left(x-1\right)\left(x-2\right)}-\sqrt{x-1}+\sqrt{x+3}-\sqrt{\left(x-2\right)\left(x+3\right)}=0\)
\(\Leftrightarrow\sqrt{x-1}\left(\sqrt{x-2}-1\right)-\sqrt{x+3}\left(\sqrt{x-2}-1\right)=0\)
\(\Leftrightarrow\left(\sqrt{x-1}-\sqrt{x+3}\right)\left(\sqrt{x-2}-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}=\sqrt{x+3}\\\sqrt{x-2}=1\end{matrix}\right.\)
\(\Leftrightarrow x=3\)
Giair phương trình bằng phương pháp lập phương trình tích:
\(\sqrt{x-1}+\sqrt{x^3-x^2+x+1}=1+\sqrt{x^4-1}\)
Giair phương trình :
a,\(4x-15\sqrt{x}+14=0\)
b,\(\sqrt{x+1}+1=4x^2+\sqrt{3x}\)
\(a,Đk:x\ge0\\ PT\Leftrightarrow4x-8\sqrt{x}-7\sqrt{x}+14=0\\ \Leftrightarrow\left(\sqrt{x}-2\right)\left(4\sqrt{x}-7\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=4\\x=\dfrac{49}{4}\end{matrix}\right.\left(tm\right)\\ b,ĐK:x\ge0\\ PT\Leftrightarrow\sqrt{x+1}-\sqrt{3x}+1-4x^2=0\\ \Leftrightarrow\dfrac{1-2x}{\sqrt{x+1}+\sqrt{3x}}+\left(1-2x\right)\left(2x+1\right)=0\\ \Leftrightarrow\left(1-2x\right)\left(\dfrac{1}{\sqrt{x+1}+\sqrt{3x}}+2x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\left(tm\right)\\\dfrac{1}{\sqrt{x+1}+\sqrt{3x}}+2x+1=0\left(1\right)\end{matrix}\right.\)
Với \(x\ge0\Leftrightarrow\left(1\right)>0\)
Vậy PT có nghiệm \(x=\dfrac{1}{2}\)
Giair phương trình: \(\left(x+2\right)\sqrt{3x+6}-2\sqrt{x^2+x-1}+3x^2-10=0\)
giair phương trình
\(1+\sqrt{x^2+1}=x+\sqrt{x^2+x}\)
ĐK: \(x\ge0\) hoặc \(x\le-1\)
Đặt: \(\sqrt{x^2+1}=a;\) \(\sqrt{x^2+x}=b\) \(\left(a,b\ge0\right)\)
Khi đó pt đcho trở thành:
\(a-b=b^2-a^2\)
<=> \(\left(a-b\right)\left(a+b+1\right)=0\)
đến đây tự lm
p/s: bài này có nhiều cách, bn tham khảo
Giair phương trình bằng cách đặt ẩn phụ:
a) \(x^2+2x\sqrt{x-\dfrac{1}{x}}=3x+1\)
b) \(x^2+\sqrt[3]{x^4-x^2}=2x+1\)
2x+\(\sqrt{x+\sqrt{x-\frac{1}{4}}}\)=2
giair phương trình
Giair phương trình:
\(\sqrt{x^2+1}-x=0\)
ĐKXĐ : \(x\ge0\)
\(\sqrt{x^2+1}-x=0\Leftrightarrow\sqrt{x^2+1}=x\Leftrightarrow x^2+1=x^2\Leftrightarrow1=0\) (vô lý)
Vậy pt vô nghiệm.
\(\Leftrightarrow\sqrt{x^2+1}=x\)
\(\Leftrightarrow x^2+1=x^2\)
\(\Leftrightarrow1=0\) ( vô lí )
=> Phương trình vô nghiệm
\(\Rightarrow\sqrt{x^2+1}=x\)
\(\Rightarrow\left(x^2+1\right)^2=x^2\)
\(\Rightarrow\left(x^2+1\right)^2-x^2=0\)
\(\Rightarrow\left(x^2+1+x^2\right)\left(x^2+1-x^2\right)=0\)
\(\Rightarrow2x^2+1=0\)
Vì \(\begin{cases}2x^2\ge0\\1>0\end{cases}\)\(\Rightarrow2x^2+1\ge1\)
Vậy phương trình vô nghiệm
Giair phương trình \(x^2+3x+1=\left(x+3\right)\sqrt{x^2+1}\)
Đặt \(\sqrt{x^2+1}=a\left(a>0\right),x+3=b\)
\(Pt\Leftrightarrow a^2+3b-9=ab\)
\(\Leftrightarrow\left(a-3\right)\left(a+3\right)-b\left(a-3\right)=0\)
\(\Leftrightarrow\left(a-3\right)\left(a+3-b\right)=0\Leftrightarrow\orbr{\begin{cases}a=3\\a+3=b\end{cases}}\left(tm\right)\)
* \(a=3\Leftrightarrow\sqrt{x^2+1}=3\Leftrightarrow x^2+1=9\Leftrightarrow x^2=8\Leftrightarrow\orbr{\begin{cases}x=2\sqrt{2}\\x=-2\sqrt{2}\end{cases}}\)
*\(a+3=b\Leftrightarrow\sqrt{x^2+1}+3=x+3\)( bình phương tiếp với x>-3)( hình như k có nghiệm)