Thực hiện phép tính: A = cos2 520 + cos2 380 + sin2 300
Bài 4. a) Tính giá trị biểu thức:
A = cos2 20° + cos2 40° + cos2 50° + cos2 70°.
b) Rút gọn biểu thức:
B = sin6 a + cos6 a + 3 sin2 a. cos2 a
\(a,A=\left(\cos^220^0+\cos^270^0\right)+\left(\cos^240^0+\cos^250^0\right)\\ A=\left(\cos^220^0+\sin^220^0\right)+\left(\cos^240^0+\sin^240^0\right)=1+1=2\\ b,B=\left(\cos^2\alpha\right)^3+\left(\sin^2\alpha\right)^3+3\sin^2\alpha\cdot\cos^2\alpha\cdot\left(\sin^2\alpha+\cos^2\alpha\right)\\ B=\left(\sin^2\alpha+\cos^2\alpha\right)^3=1^3=1\)
a) Biết sin2=\(\dfrac{9}{15}tính\cos2,\tan2,\cot,biết\cos2=\dfrac{3}{5}tính\sin2,\tan2,\cot2\)
Chứng minh đẳng thức
a) \(\dfrac{1-sin2\alpha+cos2\alpha}{1+sin2\alpha+cos2\alpha}=tan\left(\dfrac{\pi}{4}-\alpha\right)\)
b) \(\dfrac{1-cos\alpha+cos2\alpha}{sin2\alpha-sin\alpha}=cot\alpha\)
\(\dfrac{1+cos2a-sin2a}{1+cos2a+sin2a}=\dfrac{2cos^2a-2sina.cosa}{2cos^2a+2sinacosa}\)
\(=\dfrac{2cosa\left(cosa-sina\right)}{2cosa\left(cosa+sina\right)}=\dfrac{cosa-sina}{cosa+sina}=\dfrac{\sqrt{2}sin\left(\dfrac{\pi}{4}-a\right)}{\sqrt{2}cos\left(\dfrac{\pi}{4}-a\right)}=tan\left(\dfrac{\pi}{4}-a\right)\)
\(\dfrac{1+cos2a-cosa}{sin2a-sina}=\dfrac{2cos^2a-cosa}{2sina.cosa-sina}=\dfrac{cosa\left(2cosa-1\right)}{sina\left(2cosa-1\right)}=\dfrac{cosa}{sina}=cota\)
cho tan∂ =2 . tính Cot2 , Sin2, Cos2
\(\cot\alpha=\dfrac{1}{2}\)
\(\sin\alpha=\dfrac{kề}{\sqrt{5}kề}=\dfrac{\sqrt{5}}{5}\)
\(\cos\alpha=\sqrt{1-\dfrac{5}{25}}=\dfrac{2\sqrt{5}}{5}\)
1. cos 2a + cos 2b = - 2 cos(a+b) cos( a-b)
2. cos2a + sin2b = 1
3. cos a2 + sin b2= 1
4. cos2 a + sin2 a = 1
5. cos 2a = cos2 a - 2 sin 2a
6. sin 2a = - 2 sin a. cos a.
7. sin 2a = cos2 a - sin2 a
8. sin 2a - sin 2b= 2 sin ( a+b) cos ( a - b)
9. sin 2a - sin 2b= 2 cos( a+b) sin ( a - b)
10. cos a2 + sin a2 = 1
Câu số mấy đúng?
Biết 𝐬𝐢𝐧 ∝= 𝟑/𝟓 . Tính : a) 𝐴 = cos ∝ sin3 ∝ + cos3 ∝ sin ∝ b) 𝐵 = cos2 ∝ sin4 ∝ + cos4 ∝ sin2
\(\cos\alpha=\sqrt{1-\dfrac{9}{25}}=\dfrac{4}{5}\)
a: \(A=\cos\alpha\cdot\sin^3\alpha+\cos^3\alpha\cdot\sin\alpha\)
\(=\dfrac{4}{5}\cdot\dfrac{27}{125}+\dfrac{64}{125}\cdot\dfrac{3}{5}\)
\(=\dfrac{4\cdot27+64\cdot3}{625}\)
\(=\dfrac{300}{625}=\dfrac{12}{25}\)
Chứng minh: cos2 (a - b) - sin2 (a + b) = cos2a.cos2b
\(cos^2\left(a-b\right)-sin^2\left(a+b\right)\)
\(=\left(cosa.cosb+sina.sinb\right)^2-\left(sina.cosb+cosa.sinb\right)^2\)
\(=cos^2a.cos^2b+sin^2a.sin^2b-sin^2a.cos^2b-cos^2a.sin^2b\)
\(=cos^2b\left(cos^2a-sin^2a\right)-sin^2b\left(cos^2a-sin^2a\right)\)
\(=\left(cos^2b-sin^2b\right)\left(cos^2a-sin^2a\right)\)
\(=cos2a.cos2b\left(dpcm\right)\)
bài 2 Tisnhg ía trị biểu thức:
a) sin230 độ - sin240 độ - sin250 độ + sin2 60 độ
b) cos225 độ - cos235độ + cos245 độ -cos2 55 độ + cos2 65 độ
a) sin230 độ - sin240 độ - sin250 độ + sin2 60 độ
= cos260o - cos250o - sin250o + sin260o
= (cos260o + sin260o) - (cos250o + sin250o)
= 1 - 1 = 0
b) cos225 độ - cos235độ + cos245 độ -cos2 55 độ + cos2 65 độ
= sin265o - sin255o + cos245o - cos255o + cos265o
= (sin265o + cos265o) - (sin255o + cos255o) + cos245o
= 1 - 1 +1/2
= 1/2
rút gọn hệ thức :
a) A = \(\frac{\sin2\alpha+\sin3\alpha+\sin4\alpha}{\cos2\alpha+\cos3\alpha+\cos4\alpha}\)
b) B = \(\frac{\sin\alpha+2\sin2\alpha+\sin3\alpha}{\cos\alpha+2\cos2\alpha+\cos3\alpha}\)
Cho sin2=0.6
Tính cos2, tan2, cotang2 (2 là anfa)
\(sin^2\alpha+cos^2\alpha=1\Rightarrow cos\alpha=\sqrt{1-sin^2\alpha}=\sqrt{1-\left(0,6\right)^2}=\frac{4}{5}\)
\(tan\alpha=\frac{sin\alpha}{cos\alpha}=\frac{0,6}{\frac{4}{5}}=\frac{3}{4}\)
\(cot\alpha=\frac{1}{tan\alpha}=\frac{1}{\frac{3}{4}}=\frac{4}{3}\)