vẽ đồ thị hàm số
1) hàm số y = 4x+7 với \(x\ge0\)
2) hàm số \(y=\left|2x-3\right|\)
a) khảo sát và vẽ đồ thị hàm số \(y=\dfrac{2x-3}{x+2}\)
b) khảo sát và vẽ đồ thị hàm số \(y=\left|\dfrac{2x-3}{x+2}\right|\)
c) khảo sát và vẽ đồ thị hàm số \(y=\dfrac{2x-3}{\left|x+2\right|}\)
a. Vẽ đồi thị hàm số y= 2x +3
b. Xác định m để đồ thị hàm số y= 2x +3 song song với đồ thị hàm số \(y=\left(m^2-2m+2\right)x+2m-1\)
a) khảo sát và vẽ đồ thị hàm số \(y=x^4-2x^2+3\)
b) vẽ đồ thị hàm số \(y=\left|x^4-2x^2+3\right|\)
lập bảng biến thiên của hàm số \(y=\hept{\begin{cases}2x+1\left(x\ge0\right)\\-x^2\left(x< 0\right)\end{cases}}\)và vẽ đồ thị hàm số
B1: Cho hàm số \(y=\frac{-1}{3}.x\)
a. Vẽ đồ thị hàm số
B2: Vẽ đồ thị của hàm số \(y=\frac{2}{3}\left(2x+\left|x\right|\right)\)
GIÚP MÌNH 2 BÀI NÀY VỚI MAI PHẢI NỘP RỒI
Cho hàm số \(y=f\left(x\right)\) có đạo hàm liên tục trên R, thỏa mãn: \(2f\left(2x\right)+f\left(1-2x\right)=12x^2\). Phương trình tiếp tuyến của đồ thị hàm số tại điểm có hoành độ \(x=1\) là:
A. \(y=4x-2\)
B. \(y=2x+2\)
C. \(y=2x-6\)
D. \(y=4x-6\)
Cho hàm số \(y=mx+m-6\left(m\ne0\right)\left(1\right)\).
1) Xác định m biết đồ thị hàm số (1) đi qua điểm M(2; 3). Vẽ đồ thị hàm số (1) với m vừa tìm được.
2) Tìm m để đồ thị hàm số (1) song song với đường thẳng \(y=3x+2\)
3) Chứng minh rằng đồ thị hàm số (1) luôn đi qua một điểm cố định với mọi giá trị của tham số m
1. Đồ thị của hàm số đi qua điểm \(M\left(2;3\right)\) nên giá trị hoành độ và tung độ của \(M\) là nghiệm của phương trình đường thẳng trên, tức:
\(3=m\cdot2+m-6\Leftrightarrow m=3\left(TM\right)\)
2. Đồ thị hàm số song song với đường thẳng \(\left(d\right):y=3x+2\), khi: \(\left\{{}\begin{matrix}m=3\\m-6\ne2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=3\\m\ne8\end{matrix}\right.\Rightarrow m=3\left(TM\right)\)
3. Gọi \(P\left(x_0;y_0\right)\) là điểm cố định mà đồ thị hàm số đi qua với mọi giá trị \(m\).
Khi đó: \(mx_0+m-6=y_0\Leftrightarrow\left(x_0+1\right)m-\left(y_0+6\right)=0\left(I\right)\)
Suy ra, phương trình \(\left(I\right)\) có vô số nghiệm, điều này xảy ra khi: \(\left\{{}\begin{matrix}x_0+1=0\\y_0+6=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_0=-1\\y_0=-6\end{matrix}\right.\).
Vậy: Điểm cố định mà đồ thị hàm số luôn đi qua với mọi giá trị \(m\) là \(P\left(-1;-6\right)\).
Cho hàm số \(y=\left(2a+3\right)x\)
a) Tìm a biết đồ thị hàm số đi qua điểm A(1; -1). Với đồ thị hàm số tìm được, tìm giao điểm của đồ thị đó với đồ thị hàm số \(y=4x-5\)
b) Tìm a biết đồ thị hàm số \(y=\left(2a+3\right)x\)cắt đồ thị hàm số \(y=-2x+2\)tại điểm có hoành độ là 1
a) Vì đồ thị hàm số đi qua A(1;-1) nên ta có :
x= 1 ; y=-1 và thay vào hàm số ta có
y= (2a+3) <=> -1 = (2a + 3)*1 <=> 2a + 3 = -1 <=> 2a = - 3 - 1 <=> 2a = -4 <=> a = -2
Vậy đồ thị hàm số có dạng y = ( -4 +3)x = -1x
- Ta có phương trình hoành độ giao điểm :
-1x = 4x - 5
<=> -1x - 4x = -5
<=>-5x = -5 <=> x = 1 => y = -1x = -1 * 1 = -1
Vậy 2 đồ thị hàm số giao nhau tại B ( 1; -1)
b) Vì hoành độ bằng 1 bằng 1 nên x = 1
Ta có phương trình hoành độ giao điểm :
(2a + 3 )x = -2x +2
thay x = 1 vào phương trình ta có :
( 2a + 3)*1 = -2*1 + 2
<=> 2a + 3 = -2+ 2
<=> 2a = -2 +2 -3 <=> a = \(-\frac{3}{2}\)
Bài 1 a) Khảo sát và vẽ đồ thị hàm số y=x³-2x²+x (C) b) từ đồ thị (C) suy ra đồ thị các hàm số sau: y=|x³-2x²+x|, y=|x|³ -2x²+|x| Bài 2: Khảo sát và vẽ đồ thị hàm số y=x⁴-2x²-3 (C). Từ đồ thị (C) suy ra đồ thị hàm số y=|y=x⁴-2x²-3|
Cho hàm số:
\(y=\left(-k+2\right)x+k\left(1\right)\) (với k là tham số)
\(y=2x+3\left(2\right)\) (với k là tham số)
a) Đồ thị của hàm số (1) cắt đồ thị của hàm số (2) tại một điểm có hoành độ là 2?
b) Đồ thị của hàm số (1) cắt đồ thị của hàm số (2) tại một điểm có tung độ là 3