Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Hương Ly
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 12 2022 lúc 21:27

a: =-x^2+6x-4

=-(x^2-6x+4)

=-(x^2-6x+9-5)

=-(x-3)^2+5<=5

Dấu = xảy ra khi x=3

b: =3(x^2-5/3x+7/3)

=3(x^2-2*x*5/6+25/36+59/36)

=3(x-5/6)^2+59/12>=59/12

Dấu = xảy ra khi x=5/6

c: \(=-\left(x-3\right)^2+2\left|x-3\right|\)

\(=-\left[\left(\left|x-3\right|\right)^2-2\left|x-3\right|+1-1\right]\)

\(=-\left(\left|x-3\right|-1\right)^2+1< =1\)

Dấu = xảy ra khi x=4 hoặc x=2

dũng nguyễn đăng
Xem chi tiết
Lấp La Lấp Lánh
22 tháng 9 2021 lúc 10:40

Bài 5:

a) \(A=x^2-4x+9=\left(x^2-4x+4\right)+5=\left(x-2\right)^2+5\ge5\)

\(minA=5\Leftrightarrow x=2\)

b) \(B=x^2-x+1=\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

\(minB=\dfrac{3}{4}\Leftrightarrow x=\dfrac{1}{2}\)

c) \(C=2x^2-6x=2\left(x^2-3x+\dfrac{9}{4}\right)-\dfrac{9}{2}=2\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\ge-\dfrac{9}{2}\)

\(minC=-\dfrac{9}{2}\Leftrightarrow x=\dfrac{3}{2}\)

Bài 4:

a) \(M=4x-x^2+3=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\)

\(maxM=7\Leftrightarrow x=2\)

b) \(N=x-x^2=-\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{1}{4}=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\le\dfrac{1}{4}\)

\(maxN=\dfrac{1}{4}\Leftrightarrow x=\dfrac{1}{2}\)

c) \(P=2x-2x^2-5=-2\left(x^2-x+\dfrac{1}{4}\right)-\dfrac{9}{2}=-2\left(x-\dfrac{1}{2}\right)^2-\dfrac{9}{2}\le-\dfrac{9}{2}\)

\(maxP=-\dfrac{9}{2}\Leftrightarrow x=\dfrac{1}{2}\)

 

Marry Lili Potter
Xem chi tiết
Trên con đường thành côn...
5 tháng 8 2021 lúc 9:25

Thật ra cách làm dạng bài này cũng gần giống như bài tìm gtnn bạn vừa hỏi, chỉ khác ở chỗ đặt dấu âm ra ngoài để tìm được gtln thôi. 

Trên con đường thành côn...
5 tháng 8 2021 lúc 9:35

undefined

Trên con đường thành côn...
5 tháng 8 2021 lúc 9:44

Bạn xem lại đề câu e nhé.

undefined

Việt Anh
Xem chi tiết
Tử Nguyệt Hàn
4 tháng 9 2021 lúc 16:14

\(A=x^2-4x+1\)
\(A=x^2-4x+4-3\)
\(A=\left(x-2\right)^2-3\)
Min A = -3
Min A xảy ra khi (x-2)2=0
                           x-2=0
                           x=2
 

Edogawa Conan
4 tháng 9 2021 lúc 16:16

A đến C là tìm GTNN

\(A=x^2-4x+1=\left(x-2\right)^2-3\ge-3\)

Dấu "=" xảy ra ⇔ x=2

\(B=2x^2-x+1=2\left(x^2-2.\dfrac{1}{4}x+\dfrac{1}{16}\right)+\dfrac{7}{8}=2\left(x-\dfrac{1}{4}\right)^2+\dfrac{7}{8}\ge\dfrac{7}{8}\)

Dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{1}{4}\)

\(C=x^2-x+1=\left(x^2-2.\dfrac{1}{2}x+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

Dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{1}{2}\)

Edogawa Conan
4 tháng 9 2021 lúc 16:23

D đến F là tìm GTLN

\(E=-x^2+2x-2=-\left(x^2-2x+1\right)-1=-\left(x-1\right)^2-1\le-1\)

Do (x-1)2≥0 ⇔-(x-1)2≤0 ⇔ D≤-1

Dấu "=" xảy ra ⇔ x=1

\(D=-x^2+x-3=-\left(x^2-2.\dfrac{1}{2}+\dfrac{1}{4}\right)-\dfrac{11}{4}=-\left(x-\dfrac{1}{2}\right)^2-\dfrac{11}{4}\le-\dfrac{11}{4}\)

Dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{1}{2}\)

\(F=-3x^2+x-2=-3\left(x^2-2.\dfrac{1}{6}+\dfrac{1}{36}\right)-\dfrac{23}{12}=-3\left(x-\dfrac{1}{6}\right)-\dfrac{23}{12}\le-\dfrac{23}{12}\)

Dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{1}{6}\)

lilla
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 7 2021 lúc 21:01

Bài 1: 

a) Ta có: \(A=-x^2-4x-2\)

\(=-\left(x^2+4x+2\right)\)

\(=-\left(x^2+4x+4-2\right)\)

\(=-\left(x+2\right)^2+2\le2\forall x\)

Dấu '=' xảy ra khi x=-2

b) Ta có: \(B=-2x^2-3x+5\)

\(=-2\left(x^2+\dfrac{3}{2}x-\dfrac{5}{2}\right)\)

\(=-2\left(x^2+2\cdot x\cdot\dfrac{3}{4}+\dfrac{9}{16}-\dfrac{49}{16}\right)\)

\(=-2\left(x+\dfrac{3}{4}\right)^2+\dfrac{49}{8}\le\dfrac{49}{8}\forall x\)

Dấu '=' xảy ra khi \(x=-\dfrac{3}{4}\)

c) Ta có: \(C=\left(2-x\right)\left(x+4\right)\)

\(=2x+8-x^2-4x\)

\(=-x^2-2x+8\)

\(=-\left(x^2+2x-8\right)\)

\(=-\left(x^2+2x+1-9\right)\)

\(=-\left(x+1\right)^2+9\le9\forall x\)

Dấu '=' xảy ra khi x=-1

Nguyễn Lê Phước Thịnh
15 tháng 7 2021 lúc 21:02

Bài 2: 
a) Ta có: \(=25x^2-20x+7\)

\(=\left(5x\right)^2-2\cdot5x\cdot2+4+3\)

\(=\left(5x-2\right)^2+3>0\forall x\)

b) Ta có: \(B=9x^2-6xy+2y^2+1\)

\(=9x^2-6xy+y^2+y^2+1\)

\(=\left(3x-y\right)^2+y^2+1>0\forall x,y\)

c) Ta có: \(E=x^2-2x+y^2-4y+6\)

\(=x^2-2x+1+y^2-4y+4+1\)

\(=\left(x-1\right)^2+\left(y-2\right)^2+1>0\forall x,y\)

Việt Anh
Xem chi tiết
ILoveMath
3 tháng 9 2021 lúc 9:18

\(A=x^2-4x+1=\left(x^2-4x+4\right)-3=\left(x-2\right)^2-3\ge-3\)

Vậy \(A_{Min}=-3khix=2\)

 

cù thị lan anh
Xem chi tiết
Khai Hoan Nguyen
17 tháng 10 2021 lúc 15:28

a. \(\left(x+2\right)^{^2}-\left(x-4\right)^{^2}+x^{^2}-3x+1=x^{^2}+4x+4-x^{^2}+8x-16+x^{^2}-3x+1=x^{^2}+9x-11\)

b. \(\left(2x+2\right)^{^2}-4x\left(x+2\right)=4x^{^2}+8x+4-4x^{^2}-8x=4\)

Thiên Tỉ ca ca
Xem chi tiết
Tớ Chưa Bồ
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 7 2021 lúc 0:38

Bài 3: 

a) Ta có: \(A=25x^2-20x+7\)

\(=\left(5x\right)^2-2\cdot5x\cdot2+4+3\)

\(=\left(5x-2\right)^2+3>0\forall x\)(đpcm)

d) Ta có: \(D=x^2-2x+2\)

\(=x^2-2x+1+1\)

\(=\left(x-1\right)^2+1>0\forall x\)(đpcm)

Nguyễn Lê Phước Thịnh
9 tháng 7 2021 lúc 0:39

Bài 1: 

a) Ta có: \(A=x^2-2x+5\)

\(=x^2-2x+1+4\)

\(=\left(x-1\right)^2+4\ge4\forall x\)

Dấu '=' xảy ra khi x=1

b) Ta có: \(B=x^2-x+1\)

\(=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)

\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)