Giải phương trình: \(x^2+x^2y^2=4+2xy\)(với x, y là các số tự nhiên)
a) tìm số tự nhiên x và số nguyên y thỏa mãn: \(x^2y+2xy+x^2-2018x+y=-1\)
b) giải hệ phương trình \(\left\{{}\begin{matrix}x^2-2y^2+xy=2y-2x\\\sqrt{x+2y+1}+\sqrt{x^2+y+2}=4\end{matrix}\right.\)
\(y\left(x+1\right)^2=-x^2+2018x-1\)
\(\Leftrightarrow y=\dfrac{-x^2+2018x-1}{\left(x+1\right)^2}=-1+\dfrac{2020x}{\left(x+1\right)^2}\)
\(\Rightarrow\dfrac{2020x}{\left(x+1\right)^2}\in Z\)
Mà x và \(x\left(x+2x\right)+1\) nguyên tố cùng nhau
\(\Rightarrow2020⋮\left(x+1\right)^2\)
Ta có 2020 chia hết cho đúng 2 số chính phương là 1 và 4
\(\Rightarrow\left[{}\begin{matrix}\left(x+1\right)^2=1\\\left(x+1\right)^2=4\end{matrix}\right.\) \(\Rightarrow x=\left\{0;1\right\}\) \(\Rightarrow y\)
b.
Từ pt đầu:
\(x^2+xy-2y^2+2\left(x-y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(x+2y\right)+2\left(x-y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(x+2y+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=y\\x=-2y-2\end{matrix}\right.\)
Thế xuống dưới ...
Bài 1:a) Chứng minh rằng không tồn tại các cặp số x,y thỏa mãn:
8x2+26xy+29y2=10001
b) Giải phương trình nghiệm nguyên 2xy-2y+x^2-4x+2=0
c) Giải phương trình 4+2\(\sqrt{2-2x^2}\)=3\(\sqrt{x}+3\sqrt{2-x}\)
Giúp mình bài này ạ:
Bài 1:a) Chứng minh rằng không tồn tại các cặp số x,y thỏa mãn:
8x2+26xy+29y2=10001
b) Giải phương trình nghiệm nguyên 2xy-2y+x^2-4x+2=0
c) Giải phương trình 4+2√2−2x22−2x2=3√x+3√2−x
a) Tìm nghiệm nguyên của phương trình: \(2y^2-x+2xy=y+4\)
b) Giải phương trình : ( \(1+x\sqrt{x^2+1}\))(\(\sqrt{x^2+1}-x\)) = 1
\(\left(1+x\sqrt{x^2+1}\right)\left(\sqrt{x^2+1}-x\right)=1\)
\(\Rightarrow\dfrac{1+x\sqrt{x^2+1}}{\sqrt{x^2+1}+x}=1\)
\(\Rightarrow1+x\sqrt{x^2+1}=\sqrt{x^2+1}+x\)
\(\Rightarrow1+x\sqrt{x^2+1}-\sqrt{x^2+1}-x=0\)
\(\Rightarrow-\left(x-1\right)+\left(x-1\right)\sqrt{x^2+1}=0\)
\(\Rightarrow\left(x-1\right)\left(\sqrt{x^2+1}-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-1=0\\\sqrt{x^2+1}-1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\\sqrt{x^2+1}=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x^2+1=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=0\end{matrix}\right.\)
\(a,2y^2-x+2xy=y+4\\ \Leftrightarrow2y\left(x+y\right)-\left(x+y\right)=4\\ \Leftrightarrow\left(2y-1\right)\left(x+y\right)=4=4\cdot1=\left(-4\right)\left(-1\right)=\left(-2\right)\left(-2\right)=2\cdot2\)
Vì \(x,y\in Z\Leftrightarrow2y-1\) lẻ
\(\left\{{}\begin{matrix}2y-1=1\\x+y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}2y-1=-1\\x+y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=0\end{matrix}\right.\)
Vậy PT có nghiệm \(\left(x;y\right)=\left\{\left(3;1\right);\left(4;0\right)\right\}\)
Mọi người giải giúp em hệ phương trình này với ạ!
{(x+3y+1) căn (2xy+2y)=y (3x+4y+3)(1)
( căn (x+3)- căn (2y-2)(x-3+ căn (x^2+x+2y^2-y)=4
Mong mọi người giúp tôi giải hệ phương trình này:
\(\begin{cases}\sqrt{x^2+2y}+2y=\sqrt[3]{8y^3+4}+\left(x^2+2y-1\right)\sqrt{6x+4}\\\sqrt{y^2+1}+\sqrt{x-y}=2xy-x^2+\sqrt{x^2-2xy+y^2+1}+\sqrt{y}\end{cases}\)
giải phương trình x^2+xy-2012x-2013y-2014=0
tìm các số nguyên x,y thỏa mãn : x^2-2xy+2y^2-2x+6y+5=0
Ta có:
\(x^2-2xy+2y^2-2x+6y+5=\left(x^2-xy+y^2\right)+y^2-2\left(x-y\right)+4y+5\)
\(=\left[\left(x-y\right)^2-2\left(x-y\right)+1\right]+\left(y^2+4y+4\right)\)
\(=\left(x-y-1\right)^2+\left(y+2\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}x-y=1\\y=-2\end{cases}\Rightarrow\hept{\begin{cases}x=y+1=-1\\y=-2\end{cases}}}\)
a) Giải phương trình nghiệm nguyên \(2xy^2+x+y+1=x^2+2y^2+xy\)
b) tìm các số nguyên dương x;y sao cho \(\frac{x^3+x}{3xy-1}\)là một số nguyên
a) \(2xy^2+x+y+1=x^2+2y^2+xy\)
\(\Leftrightarrow2xy^2+x+y-x^2-2y^2-xy=-1\)
\(\Leftrightarrow2xy^2-2y^2+x-x^2+y-xy=-1\)
\(\Leftrightarrow2y^2\left(x-1\right)-x\left(x-1\right)-y\left(x-1\right)=-1\)
\(\Leftrightarrow\left(x-1\right)\left(2y^2-x-y\right)=-1\)
Để x nguyên thì x - 1 nguyên. Vậy thì \(x-1\in\left\{-1;1\right\}\)
Với x = 1, ta có \(2y^2-1-y=-1\Rightarrow2y^2-y=0\Rightarrow\orbr{\begin{cases}y=0\left(n\right)\\y=\frac{1}{2}\left(l\right)\end{cases}}\)
Với x = -1, ta có \(2y^2+1-y=1\Rightarrow2y^2+y=0\Rightarrow\orbr{\begin{cases}y=0\left(n\right)\\y=\frac{-1}{2}\left(l\right)\end{cases}}\)
Vậy phương trình có nghiệm (x; y) = (1; 0) hoặc (-1; 0).
tìm các số tự nhiên x, y sao cho x2 + 2y2 + 2xy +3y - 4=0