Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoàng Anh
Xem chi tiết
Nguyễn Đức Trí
21 tháng 9 2023 lúc 5:19

b) \(2sin^2x-3sinxcosx+cos^2x=0\)

\(\Leftrightarrow2tan^2x-3tanx+1=0\left(cosx\ne0\Leftrightarrow x\ne\dfrac{\pi}{2}+k\pi\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}tanx=1\\tanx=\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}tanx=tan\dfrac{\pi}{4}\\tanx=\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{4}+k\pi\\x=arctan\left(\dfrac{1}{2}\right)+k\pi\end{matrix}\right.\left(k\in Z\right)\)

Ngô Chí Thành
Xem chi tiết
Nguyễn Việt Lâm
4 tháng 10 2020 lúc 17:55

Nhận thấy \(cosx=0\) ko phải nghiệm, chia 2 vế cho \(cos^2x\)

\(2tan^2x-3tanx+1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}tanx=1\\tanx=\frac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k\pi\\x=arctan\left(\frac{1}{2}\right)+k\pi\end{matrix}\right.\)

Pt có 8 nghiệm trên đoạn đã cho (ứng với các giá trị \(k=\left\{-2;-1;0;1\right\}\))

Khách vãng lai đã xóa
Quỳnh Văn Như
Xem chi tiết
Nguyễn Đăng Khôi
12 tháng 5 2018 lúc 21:10

bam table dc 2 no

Trần Khánh Linh
Xem chi tiết
Nguyễn Việt Lâm
23 tháng 8 2021 lúc 17:22

\(cos\left(\dfrac{\pi}{6}-2x\right)=cos\left(\dfrac{\pi}{2}-x\right)\)

\(\Rightarrow\left[{}\begin{matrix}\dfrac{\pi}{6}-2x=\dfrac{\pi}{2}-x+k2\pi\\\dfrac{\pi}{6}-2x=x-\dfrac{\pi}{2}+k2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{\pi}{3}+k2\pi\\x=\dfrac{2\pi}{9}+\dfrac{k2\pi}{3}\end{matrix}\right.\)

\(\Rightarrow x=\left\{\dfrac{8\pi}{9};\dfrac{14\pi}{9};\dfrac{5\pi}{3}\right\}\) có 3 nghiệm

Nguyễn Hoàng Long
Xem chi tiết
Trần Tuệ Nhi
Xem chi tiết
Nguyễn Linh Chi
24 tháng 6 2019 lúc 15:15

\(\cos5x=-\sin4x\)

<=> \(\cos5x=\cos\left(4x+\frac{\pi}{2}\right)\)

\(\Leftrightarrow\orbr{\begin{cases}5x=4x+\frac{\pi}{2}+k2\pi\\5x=-4x-\frac{\pi}{2}+k2\pi\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{\pi}{2}+k2\pi\\x=-\frac{\pi}{18}+\frac{k2\pi}{9}\end{cases}}\)

Nghiệm âm lớn nhất: \(-\frac{\pi}{18}\)

Nghiệm dương  nhỏ nhất: \(\frac{\pi}{2}\)

Nguyễn Linh Chi
24 tháng 6 2019 lúc 15:27

pt <=> \(\sin\left(5x+\frac{\pi}{3}\right)=\sin\left(2x-\frac{\pi}{3}+\frac{\pi}{2}\right)\)

<=> \(\sin\left(5x+\frac{\pi}{3}\right)=\sin\left(2x+\frac{\pi}{6}\right)\)

<=> \(\orbr{\begin{cases}5x+\frac{\pi}{3}=2x+\frac{\pi}{6}+k2\pi\\5x+\frac{\pi}{3}=\pi-2x-\frac{\pi}{6}+k2\pi\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{\pi}{18}+\frac{k2\pi}{3}\\x=\frac{\pi}{14}+\frac{k2\pi}{7}\end{cases}}\)

Trên \(\left[0,\pi\right]\)có các nghiệm:

\(\frac{11\pi}{18},\frac{\pi}{14},\frac{5\pi}{14},\frac{9\pi}{14},\frac{13\pi}{14}\)

tính tổng:...

Cú Già Madao
Xem chi tiết
Mai Anh
Xem chi tiết
Hồng Phúc
29 tháng 8 2021 lúc 15:45

\(y=2sin^2x+3sinx.cosx+cos^2x\)

\(=-\left(1-2sin^2x\right)+\dfrac{3}{2}sin2x+\dfrac{1}{2}\left(2cos^2x-1\right)+\dfrac{1}{2}\)

\(=-cos2x+\dfrac{3}{2}sin2x+\dfrac{1}{2}cos2x+\dfrac{1}{2}\)

\(=\dfrac{3}{2}sin2x-\dfrac{1}{2}cos2x+\dfrac{1}{2}\)

\(=\dfrac{\sqrt{10}}{2}\left(\dfrac{3}{\sqrt{10}}sin2x-\dfrac{1}{\sqrt{10}}cos2x\right)+\dfrac{1}{2}\)

\(=\dfrac{\sqrt{10}}{2}sin\left(2x-arccos\dfrac{3}{\sqrt{10}}\right)+\dfrac{1}{2}\)

Vì \(sin\left(2x-arccos\dfrac{3}{\sqrt{10}}\right)\in\left[-1;1\right]\)

\(\Rightarrow y=\dfrac{\sqrt{10}}{2}sin\left(2x-arccos\dfrac{3}{\sqrt{10}}\right)+\dfrac{1}{2}\in\left[-\dfrac{\sqrt{10}}{2}+\dfrac{1}{2};\dfrac{\sqrt{10}}{2}+\dfrac{1}{2}\right]\)

\(\Rightarrow y_{min}=-\dfrac{\sqrt{10}}{2}+\dfrac{1}{2}\Leftrightarrow sin\left(2x-arccos\dfrac{3}{\sqrt{10}}\right)=-1\Leftrightarrow...\)

\(y_{max}=\dfrac{\sqrt{10}}{2}+\dfrac{1}{2}\Leftrightarrow sin\left(2x-arccos\dfrac{3}{\sqrt{10}}\right)=1\Leftrightarrow...\)

Thảo Vi
Xem chi tiết
Nguyễn Việt Lâm
13 tháng 6 2021 lúc 0:46

\(\Leftrightarrow cos\left(\pi x^2+2\pi x-\dfrac{\pi}{2}\right)=sin\left(\pi x^2\right)\)

\(\Leftrightarrow sin\left(\pi x^2+2\pi x\right)=sin\left(\pi x^2\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}\pi x^2+2\pi x=\pi x^2+k2\pi\\\pi x^2+2\pi x=\pi-\pi x^2+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=k\left(1\right)\\2x^2+2x-2k-1=0\left(2\right)\end{matrix}\right.\)

(1)  có nghiệm dương nhỏ nhất \(x=1\)

Xét (2), để (2) có nghiệm \(\Rightarrow\Delta'=1+2\left(2k+1\right)\ge0\) \(\Rightarrow k\ge0\)

Khi đó (2) có 2 nghiệm: \(\left[{}\begin{matrix}x=\dfrac{-1-\sqrt{4k+3}}{2}< 0\\x=\dfrac{-1+\sqrt{4k+3}}{2}\ge\dfrac{\sqrt{3}-1}{2}\end{matrix}\right.\)

\(\Rightarrow\) Nghiệm dương nhỏ nhất của pt đã cho là \(x=\dfrac{\sqrt{3}-1}{2}\)