Biết \(\left(x+\sqrt{x^2+2020}\right)\left(y+\sqrt{y^2+2020}\right)=2020\) . Tính x + y.
1. Cho \(\left(x\sqrt{x^2+2020}\right)\left(y+\sqrt{y^2+2020}\right)=2020\)
Tính S=x+y+2020
`(x+sqrt{x^2+2020})(sqrt{x^2+2020}-x)=x^2+2020-x^2=2020`
`=>y+sqrt{y^2+2020}=sqrt{x^2+2020}-x`
`<=>x+y=sqrt{x^2+2020}-sqrt{y^2+2020}`
Tương tự:`x+y=sqrt{y^2+2020}-sqrt{x^2+2020}`
Cộng từng vế
`=>2(x+y)=0`
`<=>S=0+2020=2020`
Gt\(\Leftrightarrow\left(x+\sqrt{x^2+2020}\right)\left(x-\sqrt{x^2+2020}\right)\left(y+\sqrt{y^2+2020}\right)=2020\left(x-\sqrt{x^2+2020}\right)\)
\(\Leftrightarrow\left(x^2-x^2-2020\right)\left(y+\sqrt{y^2+2020}\right)=2020\left(x-\sqrt{x^2+2020}\right)\)
\(\Leftrightarrow-y-\sqrt{y^2+2020}=x-\sqrt{x^2+2020}\) (1)
Gt\(\Leftrightarrow\left(x+\sqrt{x^2+2020}\right)\left(y-\sqrt{y^2+2020}\right)\left(y+\sqrt{y^2+2020}\right)=2020\left(y-\sqrt{y^2+2020}\right)\)
\(\Leftrightarrow\left(y^2-y^2-2020\right)\left(x+\sqrt{x^2+2020}\right)=2020\left(y-\sqrt{y^2+2020}\right)\)
\(\Leftrightarrow-x-\sqrt{x^2+2020}=y-\sqrt{y^2+2020}\) (2)
Từ (1) (2) cộng vế với vế \(\Rightarrow-\left(x+y\right)-\left(\sqrt{y^2+2020}+\sqrt{x^2+2020}\right)=x+y-\left(\sqrt{y^2+2020}+\sqrt{x^2+2020}\right)\)
\(\Leftrightarrow-2\left(x+y\right)=0\)
\(\Leftrightarrow x+y=0\)
\(S=x+y+2020=2020\)
Biết \(\left(x+\sqrt{x^2+2020}\right)\left(y+\sqrt{y^2+2020}\right)=2020\) . Tính x + y.
\(\left(x+\sqrt{x^2+2020}\right)\left(y+\sqrt{y^2+2020}\right)=2020\)
\(\Leftrightarrow\hept{\begin{cases}\frac{2020}{x+\sqrt{x^2+2020}}=y+\sqrt{y^2+2020}\\\frac{2020}{y+\sqrt{y^2+2020}}=x+\sqrt{x^2+2020}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}-x+\sqrt{x^2+2020}=y+\sqrt{y^2+2020}\\-y+\sqrt{y^2+2020}=x+\sqrt{x^2+2020}\end{cases}}\)
\(\Leftrightarrow-2x-2y=0\)(cộng 2 vế )
\(\Leftrightarrow x+y=0\)
Mềnh còn cách khác:)
\(\left(x+\sqrt{x^2+2020}\right)\left(y+\sqrt{y^2+2020}\right)=2020\)
Ta có:\(\left(\sqrt{x^2+2020}+x\right)\left(\sqrt{x^2+2020}-x\right)=x^2+2020-x^2=2020\)
Lại có:\(\left(\sqrt{x^2+2020}+x\right)\left(\sqrt{y^2+2020}+y\right)=2020\)
\(\Rightarrow\sqrt{x^2+2020}-x=\sqrt{y^2+2020}+y\)
\(\Leftrightarrow x+y=\sqrt{x^2+2020}-\sqrt{y^2+2020}\)(1)
\(\left(\sqrt{y^2+2020}+y\right)\left(\sqrt{y^2+2020}-y\right)=y^2+2020-y^2=2020\)
\(\Rightarrow\sqrt{y^2+2020}-y=\sqrt{x^2+2020}+x\)
\(\Leftrightarrow x+y=\sqrt{y^2+2020}-\sqrt{x^2+2020}\)(2)
Cộng vế với vế của (1) và (2) ta có:\(x+y+x+y=\sqrt{x^2+2020}-\sqrt{y^2+2020}+\sqrt{y^2+2020}-\sqrt{x^2+2020}\)
\(\Leftrightarrow2x+2y=0\Leftrightarrow2\left(x+y\right)=0\Leftrightarrow x+y=0\)
1. Cho \(x,y\) thỏa mãn \(\left(x+\sqrt{x^2+2020}\right)\left(y+\sqrt{y^2+2020}\right)=2020\)
Tính \(x+y\)
2. Cho \(a,b\ne-2\) thỏa mãn \(\left(2a+1\right)\left(2b+1\right)=9\)
Tính \(A=\dfrac{1}{2+a}+\dfrac{1}{2+b}\)
Bài 1.
Ta có:\(\left(x+\sqrt{x^2+2020}\right)\left(\sqrt{x^2+2020}-x\right)=x^2+2020-x^2=2020\)
\(\Rightarrow\left(x+\sqrt{x^2+2020}\right)\left(y+\sqrt{y^2+2020}\right)=\left(x+\sqrt{x^2+2020}\right)\left(\sqrt{x^2+2020}-x\right)\)
\(\Rightarrow y+\sqrt{y^2+2020}=\sqrt{x^2+2020}-x\)
\(\Rightarrow x+y=\sqrt{x^2+2020}-\sqrt{y^2+2020}\) (1)
Ta có:\(\left(y+\sqrt{y^2+2020}\right)\left(\sqrt{y^2+2020}-y\right)=y^2+2020-y^2=2020\)
\(\Rightarrow\left(x+\sqrt{x^2+2020}\right)\left(y+\sqrt{y^2+2020}\right)=\left(y+\sqrt{y^2+2020}\right)\left(\sqrt{y^2+2020}-y\right)\)
\(\Rightarrow x+\sqrt{x^2+2020}=\sqrt{y^2+2020}-y\)
\(\Rightarrow x+y=\sqrt{y^2+2020}-\sqrt{x^2+2020}\) (2)
Cộng vế với vế của (1) và (2) ta có:
\(2\left(x+y\right)=\sqrt{y^2+2020}-\sqrt{x^2+2020}+\sqrt{x^2+2020}-\sqrt{y^2+2020}\)
\(\Rightarrow2\left(x+y\right)=0\Rightarrow x+y=0\)
Bài 2:
Ta có: (2a+1)(2b+1)=9
nên \(2b+1=\dfrac{9}{2a+1}\)
\(\Leftrightarrow2b=\dfrac{9}{2a+1}-\dfrac{2a+1}{2a+1}=\dfrac{8-2a}{2a+1}\)
\(\Leftrightarrow b=\dfrac{8-2a}{4a+2}=\dfrac{4-a}{2a+1}\)
\(\Leftrightarrow b+2=\dfrac{4-a+4a+2}{2a+1}=\dfrac{3a+6}{2a+1}\)
Ta có: \(A=\dfrac{1}{a+2}+\dfrac{1}{b+2}\)
\(=\dfrac{1}{a+2}+\dfrac{2a+1}{3a+6}\)
\(=\dfrac{3+2a+1}{3a+6}\)
\(=\dfrac{2a+4}{3a+6}=\dfrac{2}{3}\)
\(\left(x+\sqrt{x^2+2020}\right)\left(y+\sqrt{y^2+2020}\right)=2020\)
tính x+y
Bạn tham khảo tại đây:
Giải hệ phương trình:
\(\hept{\begin{cases}x^2+y^2=1\\\sqrt[2019]{x}-\sqrt[2019]{y}=\left(\sqrt[2020]{y}-\sqrt[2020]{x}\right)\left(xy+x+y+2021\right)\end{cases}}\)
xét x=y,x>y và x<y chú ý tới điều kiện x,y thuộc -1;1 nữa
Cho 2 số thực x, y thỏa mãn:
\(\left(x+\sqrt{x^2+2020}\right)\left(2y+\sqrt{4y^2+2020}\right)=2020\)
Tìm GTLN cuẩ biểu thức: B=\(\dfrac{x^2}{2}+4xy+3y^2+x+3y+15\)
\(\left(x+\sqrt{x^2+2020}\right)\left(2y+\sqrt{\left(2y\right)^2+2020}\right)=2020\)
\(\Leftrightarrow\left\{{}\begin{matrix}2y+\sqrt{\left(2y\right)^2+2020}=\sqrt{x^2+2020}-x\\x+\sqrt{x^2+2020}=\sqrt{\left(2y\right)^2+2020}-2y\end{matrix}\right.\)
\(\Rightarrow x+2y+\sqrt{x^2+2020}+\sqrt{\left(2y\right)^2+2020}=-x-2y+\sqrt{x^2+2020}+\sqrt{\left(2y\right)^2+2020}\)
\(\Leftrightarrow2\left(x+2y\right)=0\)
\(\Leftrightarrow x=-2y\)
\(\Rightarrow B=2y^2-8y^2+3y^2-2y+3y+15\)
\(\Rightarrow B=-3y^2+y+15=-3\left(y-\dfrac{1}{6}\right)^2+\dfrac{181}{12}\)
\(B_{max}=\dfrac{181}{12}\) khi \(y=\dfrac{1}{6}\)
a, cho x=\(\sqrt{2+\sqrt{3}}\) + \(\sqrt{2-\sqrt{3}}\) và y=\(\sqrt{7-2\sqrt{6}}\)
tính giá trị của biểu thức P=\(\left(x-y\right)^{2020}\)
b, tìm GTNN của B=\(x-\sqrt{x-2020}\)
\(x=\dfrac{1}{\sqrt{2}}\left(\sqrt{4+2\sqrt{3}}+\sqrt{4-2\sqrt{3}}\right)\)
\(=\dfrac{1}{\sqrt{2}}\left(\sqrt{\left(\sqrt{3}+1\right)^2}+\sqrt{\left(\sqrt{3}-1\right)^2}\right)=\sqrt{6}\)
\(y=\sqrt{\left(\sqrt{6}-1\right)^2}=\sqrt{6}-1\)
\(\Rightarrow x-y=1\Rightarrow P=1\)
\(B=x-2020-\sqrt{x-2020}+\dfrac{1}{4}+\dfrac{8079}{4}\)
\(B=\left(\sqrt{x-2020}-\dfrac{1}{2}\right)^2+\dfrac{8079}{4}\ge\dfrac{8079}{4}\)
\(B_{min}=\dfrac{8079}{4}\) khi \(x=\dfrac{8081}{4}\)
Cho x,y >0. Rút gọn A=\(\sqrt{2\left(\sqrt{x^2+y^2}+x\right)\left(\sqrt{x^2+y^2}+y\right)}-\sqrt{x^2+y^2}-x-y+2020\)
\(A=\sqrt{2\left(x^2+y^2+\left(x+y\right)\sqrt{x^2+y^2}+xy\right)}-\sqrt{x^2+y^2}-x-y+2020\)
\(=\sqrt{\left(x^2+y^2+2xy\right)+x^2+y^2+2\left(x+y\right)\sqrt{x^2+y^2}}-\sqrt{x^2+y^2}-x-y+2020\)
\(=\sqrt{\left(x+y\right)^2+2\left(x+y\right)\sqrt{x^2+y^2}+x^2+y^2}-\sqrt{x^2+y^2}-x-y+2020\)
\(=\sqrt{\left(x+y+\sqrt{x^2+y^2}\right)^2}-\sqrt{x^2+y^2}-x-y+2020\)
\(=x+y+\sqrt{x^2+y^2}-\sqrt{x^2+y^2}-x-y+2020\)
\(=2020\)
a,Cho \(\left(x-2019+\sqrt{\left(x-2019\right)^2+2020}\right)\left(y-2019+\sqrt{\left(y-2019\right)^2+2020}\right)=2020\)Tính : D = x + y
b, Cho \(\frac{-3}{2}\le x\le\frac{3}{2},x\ne0,a=\sqrt{3+2x}-\sqrt{3-2x}\)
Tính : \(G=\frac{\sqrt{6+2\sqrt{9-4x^2}}}{x}\) theo a.
Em cảm ơn mọi người nhiều ạ.