Cho số thực \(x\ge0\) chứng minh rằng \(\sqrt{x}+\frac{30}{x+3}\ge4\)
Cho \(x,y,z\ge0\),\(xy+yz+zx>0,z=\left\{x,y,z\right\}\). Chứng minh rằng:
\(\frac{x}{y+z}+2\sqrt{\frac{y}{z+x}}+3\sqrt[3]{\frac{z}{x+y}}\ge4\)
Bạn kiểm tra lại đề
\(z=max\left\{x;y;z\right\}\)hay \(z=min\left\{x;y;z\right\}\)
Chứng minh rằng biểu thức \(\sqrt[3]{1+\sqrt{x}}+\sqrt[3]{1-\sqrt{x}}\le2\) với mọi số thực \(x\) (\(x\ge0\))
Cho 2 số thực dương x,y thỏa mãn \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{2}\). Chứng minh rằng: \(\sqrt{x}+\sqrt{y}\ge4\)
\(GT\Leftrightarrow xy=2\left(x+y\right)\ge4\sqrt{xy}\Rightarrow\sqrt{xy}\ge4\)
\(\Rightarrow4\le\sqrt{xy}\le\dfrac{1}{4}\left(\sqrt{x}+\sqrt{y}\right)^2\)
\(\Rightarrow\sqrt{x}+\sqrt{y}\ge4\)
Dấu "=" xảy ra khi \(x=y=4\)
Cho x ; y là các số thực dương thỏa mãn
\(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{2}\)
Chứng minh rằng :
\(\sqrt{x}+\sqrt{y}\ge4\)
Áp dụng bđt Cô-si vào 2 số dương có:
\(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{2}{\sqrt{xy}}\Rightarrow\dfrac{1}{2}\ge\dfrac{2}{\sqrt{xy}}\Rightarrow\sqrt{xy}\ge4\)
\(\Rightarrow\sqrt{x}+\sqrt{y}\ge2\sqrt{\sqrt{xy}}=2\sqrt{4}=4\)
Dấu = xảy ra \(\Leftrightarrow x=y=4\)
`1/x+1/y>=2/(\sqrt{xy})`
`<=>1/2>=2/(\sqrt{xy})`
`<=>\sqrt{xy}>=4`
`=>\sqrt{x}+\sqrt{y}>=2.2=4`
Dấu "=" xảy ra khi `x=y=4`
Cho \(x,y\ge0.\)Chứng minh rằng: \(\left(3x+3y\right)\left(\frac{1}{x+2y}+\frac{1}{2x+y}\right)\ge4.\)
\(VT\ge\left(3x+3y\right).\frac{4}{3x+3y}=4\)
Đẳng thức xảy ra khi x = y
Sửa ĐK x, y > 0
Ta có : \(\frac{1}{x+2y}+\frac{1}{2x+y}\ge\frac{\left(1+1\right)^2}{x+2y+2x+y}=\frac{4}{3x+3y}\)( Bunyakovsky dạng phân thức )
=> \(\left(3x+3y\right)\left(\frac{1}{x+2y}+\frac{1}{2x+y}\right)\ge\left(3x+3y\right)\left(\frac{4}{3x+3y}\right)=4\)
Đẳng thức xảy ra khi x = y
chứng minh rằng:
x+\(\frac{1}{x}\)\(\ge2\)với \(x\ge0\)\(\frac{x^2+2x+2}{x}\ge4\)với \(x\ge0\)\(\sqrt{\left(x-1\right)\left(4-x\right)}\)\(\le\frac{3}{2}\)với \(1\le x\le4\)\(x+\frac{1}{x}\ge2\Leftrightarrow\frac{x^2+1}{x}\ge2\)
\(\Leftrightarrow x^2+1\ge2x\left(x\ge0\right)\)
\(\Leftrightarrow x^2-2x+1\ge0\)
\(\Leftrightarrow\left(x-1\right)^2\ge0\left(\text{luôn đúng}\right)\)
Vì BĐT cuối đúng nên BĐT đầu đúng (với x >= 0)
\(x+\frac{1}{x}\ge2\Leftrightarrow x>0\) vì x ở mẫu thức nên dấu = không xảy ra nha bạn, lúc này mình ko để ý
còn câu tiếp theo đề ntn mới đúng, cm tương tự câu trước \(\frac{x^2+2x+1}{x}\ge4\text{ với }x>0\)
\(\sqrt{\left(x-1\right).\left(4-x\right)}=\sqrt{4x-x^2-4+x}\)
\(=\sqrt{-\left(x^2-5x+4\right)}=\sqrt{-\left(x-\frac{5}{2}\right)^2+\frac{9}{4}}\le\frac{3}{2}\)
với \(1\le x\le4\)(thì BT trên có nghĩa )
Cho x,y>0 và x+y=1 .Chứng minh rằng P= \(\frac{1}{x^3+y^3}+\frac{1}{xy}\ge4+2\sqrt{3}\)
\(P=\frac{1}{\left(x+y\right)\left(\left(x+y\right)^2-3xy\right)}+\frac{1}{xy}=\frac{1}{1-3xy}+\frac{1}{xy}=\frac{1}{1-3xy}+\frac{3}{3xy}\ge\frac{\left(1+\sqrt{3}\right)^2}{1-3xy+3xy}=4+2\sqrt{3}\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}x=\frac{3+\sqrt{6\sqrt{3}-9}}{6}\\y=\frac{3-\sqrt{6\sqrt{3}-9}}{6}\end{matrix}\right.\) và hoán vị
Bài 1:
Với x, y, z là các số thực không âm thỏa mãn xy + yz + xz > 0, chứng minh rằng: \(2\sqrt{\frac{x}{y+z}}+2\sqrt{\frac{y}{z+x}}+3\sqrt[3]{\frac{z}{x+y}}\ge5\)
Bài 2:
Với x, y, z là các số thực không âm thỏa mãn xy + yz + xz > 0, z = max {x, y, z), chứng minh rằng: \(\sqrt{\frac{x}{y+z}}+2\sqrt{\frac{y}{z+x}}+3\sqrt[3]{\frac{z}{x+y}}\ge4\)
Bài 3:
Với x, y, z là các số thực không âm thỏa mãn xy + yz + xz > 0 và x + y + z = 2,chứng minh rằng: \(\frac{x}{\sqrt{4x+3yz}}+\frac{y}{\sqrt{4y+3xz}}+\frac{z}{\sqrt{4z+3xy}}\le1\)
Bài 4:
Với x, y, z là các số thực dương, chứng minh rằng: \(\frac{a}{\sqrt{a^2+15bc}}+\frac{b}{\sqrt{b^2+15ca}}+\frac{c}{\sqrt{c^2+15ab}}\ge\frac{3}{4}\)
Ai nhanh và đúng, mình sẽ đánh dấu và thêm bạn bè nhé. Thanks. Làm ơn giúp mình!!! PLEASE!!!
Bài 3 thì \(\le1\)
Bài 4 thì \(\ge\frac{3}{4}\) nhé
Bài 1:
Với x, y, z là các số thực không âm thỏa mãn xy + yz + xz > 0, chứng minh rằng: \(2\sqrt{\frac{x}{y+z}}+2\sqrt{\frac{y}{z+x}}+3\sqrt[3]{\frac{z}{x+y}}\ge5\)
Bài 2:
Với x, y, z là các số thực không âm thỏa mãn xy + yz + xz > 0, z = max {x, y, z), chứng minh rằng: \(\sqrt{\frac{x}{y+z}}+2\sqrt{\frac{y}{z+x}}+3\sqrt[3]{\frac{z}{x+y}}\ge4\)
Bài 3:
Với x, y, z là các số thực không âm thỏa mãn xy + yz + xz > 0 và x + y + z = 2,chứng minh rằng: \(\frac{x}{\sqrt{4x+3yz}}+\frac{y}{\sqrt{4y+3xz}}+\frac{z}{\sqrt{4z+3xy}}\)
Bài 4:
Với x, y, z là các số thực dương, chứng minh rằng: \(\frac{a}{\sqrt{a^2+15bc}}+\frac{b}{\sqrt{b^2+15ca}}+\frac{c}{\sqrt{c^2+15ab}}\)
Ai nhanh và đúng, mình sẽ đánh dấu và thêm bạn bè nhé. Thanks. Làm ơn giúp mình!!! PLEASE!!!
Bài 3 thì \(\le1\)
Bài 4 thì \(\ge\frac{3}{4}\) nhé
Bài 4:
Đặt: \(A=\frac{a}{\sqrt{a^2+15bc}}+\frac{b}{\sqrt{b^2+15ca}}+\frac{c}{\sqrt{c^2+15ab}}\)
Và: \(B=a\left(a^2+15bc\right)+b\left(b^2+15ca\right)+c\left(c^2+15ab\right)\)
Áp dụng BĐT Holder ta có:
\(A^2.B\ge\left(a+b+c\right)^3\)
\(\Rightarrow A^2\ge\frac{\left(a+b+c\right)^3}{a^3+b^3+c^3+45abc}\)
Ta chứng minh được: \(\frac{\left(a+b+c\right)^3}{a^3+b^3+c^3+45abc}\ge\frac{9}{16}\)
\(\Leftrightarrow16\left[a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]\ge9\left(a^3+b^3+c^3+45abc\right)\)
\(\Leftrightarrow7\left(a^3+b^3+c^3\right)+48\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge405abc\)
\(\text{Vế trái}\) \(\ge21abc+384abc\)
\(\Rightarrow\) \(\text{Vế trái}\) \(\ge3abc\left(7+16.8\right)\)
\(\Rightarrow\)\(\text{Vế trái}\) \(\ge9abc.45\)
\(\Rightarrow\) \(\text{Đpcm}\)