a) x^3+6x^2y+9xy^2-36x b) x^2-xy-x+y c) x^3-4x^2y+4xy^2-36x
6x^2-9xy+10x-15y 27x^3+36x^2y+12xy^2 Giải gấp giùm mình, cảm ơn trước ạ!!!
\(6x^2-9xy+10x-15y\\ =3x\left(2x-3y\right)+5\left(2x-3y\right)\\ =\left(3x+5\right)\left(2x-3y\right)\\ 27x^3+36x^2y+12xy^2\\ =3x\left(9x^2+12xy+4y^2\right)\\ =3x\left(3x+2y\right)^2\)
a) \(6x^2-9xy+10x-15y=\left(6x^2-9xy\right)+\left(10x-15y\right)\)
\(=3x\left(2x-3y\right)+5\left(2x-3y\right)\)
\(=\left(3x+5\right)\left(2x-3y\right)\)
b) \(27x^3+36x^2y+12xy^2=3x\left(9x^2+12xy+4y^2\right)\)
\(=3x\left[\left(3x\right)^2+2\cdot3x\cdot2y+\left(2y\right)^2\right]\)
\(=3x\left(3x+2y\right)^2\)
\(\)
X^3-6x^2y+9xy^2
\(x^3-6x^2y+9xy^2\)
=\(x\left(x^2-6xy+9y^2\right)\)
=\(x\left(x-3y\right)^2\)
X^3-6x^2y+9xy^2-16x
\(x^3-6x^2y+9xy^2-16x=x\left(x^2-6xy+9y^2-16\right)\)
\(=x\left[\left(x-3y\right)^2-16\right]=x\left(x-3y-4\right)\left(x-3y+4\right)\)
A) 7xy^2.(9xy^4+2xy+1) B)1/2xyz(6x^2y^3+4x^3y-3xy) 1)5x^2y+10xy^3 2)15xy^4-9xy 3)5x^2+10xy+5y^2
a,(3+1)(x-1)
b,5x(3x-2)
c,3x^2y+6xy^2-9xy):3xy
d,(3x^4-6x^3+4x^2):2x^y
e,(8x^4y^3-4x^3y^2+x^2y^2):2x^2y^2
tìm đa thức M
a M + (5x^2 - 2xy) = 6x^2 + 9xy - y^2
b (25 x^2y-13xy^2 + y^3)-M= 11 xy^2 - 2y^3
\(a,M+\left(5x^2-2xy\right)=6x^2+9xy-y^2\\ \Rightarrow M=6x^2+9xy-y^2-5x^2+2xy\\ \Rightarrow M=x^2+11xy-y^2\\ b,\left(25x^2y-13xy^2+y^3\right)-M=11xy^2-2y^3\\ \Rightarrow M=25x^2y-13xy^2+y^3-11xy^2+2y^3\\ \Rightarrow M=25x^2y-24xy^2+3y^3\)
Tim gia tri x nho nhat
(9xy^2-6x^2y):(-3xy)+(6x^2y+2x^4):(2x^2)
phân tích đa thức thành nhân tử
1/ \(6x^2y-9xy^2+3xy\)
2/ \(\left(4-x\right)^2-16\)
3/ \(x^3+9x^2-4x-36\)
1: \(6x^2y-9xy^2+3xy\)
\(=3xy\left(2x-3y+1\right)\)
2: \(\left(4-x\right)^2-16\)
\(=\left(4-x-4\right)\left(4-x+4\right)\)
\(=-x\cdot\left(8-x\right)\)
3: \(x^3+9x^2-4x-36\)
\(=x^2\left(x+9\right)-4\left(x+9\right)\)
\(=\left(x+9\right)\left(x-2\right)\left(x+2\right)\)
1) \(6x^2y-9xy^2+3xy=3xy\left(2x-3y+1\right)\)
2) \(\left(4-x\right)^2-16=\left(4-x\right)^2-4^2=\left(4-x-4\right)\left(4-x+4\right)=-x\left(8-x\right)\)
3) \(x^3+9x^2-4x-36\\ =\left(x^3-2x^2\right)+\left(11x^2-22x\right)+\left(18x-36\right)\\ =x^2\left(x-2\right)+11x\left(x-2\right)+18\left(x-2\right)\\ =\left(x^2+11x+18\right)\left(x-2\right)\\ =\left[\left(x^2+2x\right)+\left(9x+18\right)\right]\left(x-2\right)\\ =\left[x\left(x+2\right)+9\left(x+2\right)\right]\left(x-2\right)\\ =\left(x+2\right)\left(x+9\right)\left(x-2\right)\)
\(\begin{cases}x^3-6x^2y+9xy^2-4y^3=0\\\sqrt{x-y}+\sqrt{x+y}=2\end{cases}\)
\(\begin{cases}x^3-6x^2y+9xy^2-4y^3=0\left(1\right)\\\sqrt{x-y}+\sqrt{x+y}=2\left(2\right)\end{cases}\)
\(\left(1\right)\Leftrightarrow x^3-2x^2y+xy^2-4y^3+8xy^2-4x^2y=0\)
\(\Leftrightarrow x\left(x^2-2xy+y^2\right)-4y\left(x^2-2xy+y^2\right)=0\)
\(\Leftrightarrow\left(x^2-2xy+y^2\right)\left(x-4y\right)=0\)
\(\Leftrightarrow\left(x-y\right)^2\left(x-4y\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}\left(x-y\right)^2=0\\x-4y=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=y\\x=4y\end{array}\right.\)
Xét \(x=y\) thay vào (2) ta có:\(\left(2\right)\Leftrightarrow\sqrt{x-x}+\sqrt{x+x}=2\)
\(\Leftrightarrow\sqrt{2x}=2\Leftrightarrow2x=4\Leftrightarrow x=2\).Mà \(\begin{cases}x=2\\x=y\end{cases}\)\(\Rightarrow x=y=2\)
Xét \(x=4y\) thay vào (2) ta có:\(\left(2\right)\Leftrightarrow\sqrt{4y-y}+\sqrt{4y+y}=2\)
\(\Leftrightarrow\sqrt{3y}+\sqrt{5y}=2\)\(\Leftrightarrow\sqrt{y}\left(\sqrt{5}+\sqrt{3}\right)=2\)
\(\Leftrightarrow y\left(\sqrt{15}+4\right)=2\)\(\Leftrightarrow y=\frac{2}{\sqrt{15}+4}\).Mà \(\begin{cases}x=4y\\y=\frac{2}{\sqrt{15}+4}\end{cases}\)\(\Leftrightarrow x=\frac{8}{\sqrt{15}+4}\)