Tìm GTNN (hoặc GTLN):
\(\left(x^2-x\right)\left(x^2+3x+2\right)\)
Tìm GTLN hoặc GTNN
\(C=\left|2x-\dfrac{3}{5}\right|+1,\left(3\right)\)
\(D=\left|x-3\right|+\left|x+2\right|\)
C=|2x-3/5|+4/3>=4/3
Dấu = xảy ra khi x=3/10
D=|x-3|+|-x-2|>=|x-3-x-2|=5
Dấu = xảy ra khi -2<=x<=3
TÌM GTLN hoặc GTNN
\(I=\left(x-2\right)^2+\left(x-5\right)^2\)
\(I=\left(x-2\right)^2+\left(x-5\right)^2\)
Ta có :
\(\left(x-2\right)^2\ge0\forall\) và \(\left(x-5\right)^2\ge0\forall x\)
=> \(I\ge0\)
Dấu bằng xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x-2\right)^2=0\\\left(x-5\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\x=5\end{cases}}\)
=> không có giá trị nào để I đạt giá trị nhỏ nhất .
\(I=\left(x-2\right)^2+\left(x-5\right)^2\)
Đặt \(x-2=t\)
\(\Rightarrow I=t^2+\left(t-3\right)^2\)
\(I=t^2+t^2-6t+9\)
\(I=2t^2-6t+9\)
\(I=2.\left(t^2-2.t.1,5+2,25\right)+4,5\)
\(I=2.\left(t-1,5\right)^2+4,5\)
Ta có: \(2.\left(t-1,5\right)^2\ge0\forall t\)
\(\Rightarrow2.\left(t-1,5\right)^2+4,5\ge4,5\forall t\)
\(I=4,5\Leftrightarrow2.\left(t-1,5\right)^2=0\Leftrightarrow t-1,5=0\Leftrightarrow t=1,5\)
\(\Rightarrow x-2=1,5\)
\(\Rightarrow x=3,5\)
Vậy \(I_{min}=4,5\Leftrightarrow x=3,5\)
Tham khảo nhé~
tìm GTNN hoặc GTLN của
\(\left(x-4\right)^2+\left(x-5\right)^2\)
tìm GTNN hoặc GTLN của
\(\left(x-4\right)^2+\left(x-5\right)^2\)
\(\left(x-4\right)^2+\left(x-5\right)^2\)
\(=x^2-8x+16+x^2-10x+25=2x^2-18x+41\)
\(=2\left(x^2-9x+\frac{41}{2}\right)=2\left[x^2-2.x.\frac{9}{2}+\left(\frac{9}{2}\right)^2+\frac{1}{4}\right]=2\left(x-\frac{9}{2}\right)^2+\frac{1}{2}\)
Vì \(\left(x-\frac{9}{2}\right)^2\ge0\)
nên \(2\left(x-\frac{9}{2}\right)\ge0\)
do đó \(2\left(x-\frac{9}{2}\right)^2+\frac{1}{2}\ge\frac{1}{2}\)
Vậy \(Min_{\left(x-4\right)^2+\left(x-5\right)^2}=\frac{1}{2}\)khi \(x-\frac{9}{2}=0\Leftrightarrow x=\frac{9}{2}\)
Tìm GTLN hoặc GTNN của :
a) \(D=3\left(3x-12\right)^2-37\)
b) \(G=\left(x-3\right)^2+\left|x^2-9\right|+25\)
Nói cho mik bt GTLN và GTNN là gì đã rùi mik giải cho
tìm GTLN hoặc NN
\(H=X^2+\left(X-2\right)\left(3X-1\right)\)
\(H=x^2+\left(x-2\right)\left(3x-1\right)\)
\(=x^2+3x^2-x-6x+2\)
\(=4x^2-7x+2\)
\(=\left(2x\right)^2-2\cdot2\cdot\frac{7}{4}x+\left(\frac{7}{4}\right)^2-\frac{17}{16}\)
\(=\left(2x-\frac{7}{4}\right)^2-\frac{17}{16}\)
Vì \(\left(2x-\frac{7}{4}\right)^2\ge0\forall x\)
\(\Rightarrow\left(2x-\frac{7}{4}\right)^2-\frac{17}{16}\ge-\frac{17}{16}\forall x\)
Dấu " = " xảy ra khi và chỉ khi \(\left(2x-\frac{7}{4}\right)^2=0\)
\(\Leftrightarrow x=\frac{7}{8}\)
Vậy \(H_{min}=-\frac{17}{16}\)tại \(x=\frac{7}{8}\)
\(x^2+\left(x-2\right)\left(3x-1\right)=x^2+3x^2-x-6x+2=4x^2-7x+2\)
\(=4x^2-7x+\frac{49}{16}-\frac{17}{16}\)
\(=\left(2x-\frac{7}{4}\right)^2-\frac{17}{16}\)
Vì: \(\left(2x-\frac{7}{4}\right)^2-\frac{17}{16}\ge\frac{17}{16}\forall x\)
=> Min H =17/16 tại \(\left(2x-\frac{7}{4}\right)^2=0\Rightarrow x=\frac{7}{8}\)
=.= hok tốt!!
\(H=x^2+\left(x-2\right)\left(3x-1\right)=x^2+3x^2-x-6x+2=4x^2-7x+2\)
\(=4x^2-2.2x.\frac{7}{4}+\frac{49}{16}-\frac{17}{16}=\left(2x-\frac{7}{4}\right)^2-\frac{17}{16}\ge\frac{-17}{16}\)
Dấu "=" xảy ra \(\Leftrightarrow2x-\frac{7}{4}=0\Leftrightarrow x=\frac{7}{8}\)
Vậy HMin = -17/16 khi và chỉ khi x = 7/8
Tìm GTNN của : \(F=\left(3x-5\right)^2-6\left|3x-5\right|+10\)
Tìm GTLN : \(I=\dfrac{\left(5x+8\right)\left(2x+5\right)}{x}\left(x>0\right)\)
đặt |3x-5|= y ,ĐK : y >/ 0
F=y2-6y+10 đến đây đơn giản
ý sau khai triển tử của I rồi rút gọn được I=10x+40/x+41 >/ 2.20+41=81 (áp dụng bđt AM-GM)
tìm GTNN hoặc GTLN của D = \(\dfrac{\left|x\right|+2023}{\left|x\right|+2022}\)
\(D=\dfrac{\left|x\right|+2023}{\left|x\right|+2022}=\dfrac{\left|x\right|+2022}{\left|x\right|+2022}+\dfrac{1}{\left|x\right|+2022}\\ =1+\dfrac{1}{\left|x\right|+2022}\)
Nhận thấy : \(\left|x\right|\ge0\forall x\inℝ\)
\(\Rightarrow\left|x\right|+2022\ge2022\)
\(\Rightarrow\dfrac{1}{\left|x\right|+2022}\le\dfrac{1}{2022}\)
\(\Rightarrow D=1+\dfrac{1}{\left|x\right|+2022}\le1+\dfrac{1}{2022}=\dfrac{2023}{2022}\)
Dấu = xảy ra khi : \(\left|x\right|=0\Rightarrow x=0\)
Vậy GTLN của D là : \(\dfrac{2023}{2022}\) tại x=0
Tìm x để:
A=\(\left(x-\frac{5}{6}\right)^2+\left(xy-\frac{1}{4}\right)^4-85\) có GTNN
B=\(-5\left(3x-2\right)^4+\left(-\left(x+2y\right)^2\right)\)có GTLN