\(\sqrt{x+\sqrt{2x-1}}+\sqrt{x-\sqrt{2x-1}}=\sqrt{1}\)
(\(\dfrac{\sqrt{x}+1}{\sqrt{2x}+1}\)-\(\dfrac{\sqrt{2x}+\sqrt{x}}{\sqrt{2x}-1}\)-1):(1+\(\dfrac{\sqrt{x}+1}{\sqrt{2x}+1}\)_\(\dfrac{\sqrt{2x}+\sqrt{x}}{\sqrt{2x}-1}\))
P=\(\left(\frac{\sqrt{x}+1}{\sqrt{2x}+1}+\frac{\sqrt{2x}+\sqrt{x}}{\sqrt{2x}-1}-1\right):\left(1+\frac{\sqrt{x}+1}{\sqrt{2x}+1}-\frac{\sqrt{2x}-\sqrt{x}}{\sqrt{2x}-1}\right)\)
=\(\frac{\left(\sqrt{x}+1\right)\left(\sqrt{2x}-1\right)}{\left(\sqrt{2x}+1\right)\left(\sqrt{2x}-1\right)}+\frac{\left(\sqrt{2x}+\sqrt{x}\right)\left(\sqrt{2x}+1\right)}{MTC}-\frac{2x-1}{MTC}\)
=\(\frac{x\sqrt{2}-\sqrt{x}+\sqrt{2x}-1+2x+\sqrt{2x}+x\sqrt{2}+\sqrt{x}-2x+1}{MTC}\)
=\(\frac{2x\sqrt{2}+2\sqrt{2x}}{MTC}\)
Rút gọn biểu thức \(P=\left(\frac{\sqrt{x}+1}{\sqrt{2x}+1}+\frac{\sqrt{2x}+\sqrt{x}}{\sqrt{2x}-1}-1\right):\left(1+\frac{\sqrt{x}+1}{\sqrt{2x}+1}-\frac{\sqrt{2x}+\sqrt{x}}{\sqrt{2x}-1}\right)\)
Rút gọn : A=\(\dfrac{\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}}{\sqrt{x+\sqrt{2x-1}+\sqrt{x-\sqrt{2x-1}}}}.\left(\sqrt{2x-1}\right)\)
\(\frac{2x-1}{MTC}+\frac{\left(\sqrt{x}+1\right)\left(2\sqrt{x}-1\right)}{MTC}-\frac{\left(\sqrt{2x}+\sqrt{x}\left(\sqrt{2x}+1\right)\right)}{MTC}\)
=\(\frac{2x-1+x\sqrt{2}-\sqrt{x}+\sqrt{2x}-1-2x-\sqrt{2x}-x\sqrt{2}-\sqrt{x}}{MTC}\)
=\(\frac{-2\sqrt{x}-2}{\left(\sqrt{2x}-1\right)\left(\sqrt{2x+1}\right)}\)
1.P= \(\left(\dfrac{\sqrt{x}+1}{\sqrt{2x}-1}+\dfrac{\sqrt{2x}+\sqrt{x}}{\sqrt{2x}-1}-1\right)\):\(\left(1+\dfrac{\sqrt{x}+1}{\sqrt{2x}+1}\dfrac{\sqrt{2x}+\sqrt{x}}{\sqrt{2x}-1}\right)\)
a) Rút gọn P
b) Tính giá trị của P khi x=\(\dfrac{1}{2}\)\(\left(3+2\sqrt{2}\right)\)
a) Ta có: \(P=\left(\dfrac{\sqrt{x}+1}{\sqrt{2x}-1}+\dfrac{\sqrt{2x}+\sqrt{x}}{\sqrt{2x}+1}-1\right):\left(1+\dfrac{\sqrt{x}+1}{\sqrt{2x}+1}-\dfrac{\sqrt{2x}+\sqrt{x}}{\sqrt{2x}-1}\right)\)
\(=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{2x}+1\right)+\left(\sqrt{2x}+\sqrt{x}\right)\left(\sqrt{2x}-1\right)-2x+1}{\left(\sqrt{2x}-1\right)\left(\sqrt{2x}+1\right)}:\left(\dfrac{2x-1+\left(\sqrt{x}+1\right)\left(\sqrt{2x}-1\right)-\left(\sqrt{2x}+\sqrt{x}\right)\left(\sqrt{2x}+1\right)}{\left(\sqrt{2x}-1\right)\left(\sqrt{2x}+1\right)}\right)\)
\(=\dfrac{x\sqrt{2}+\sqrt{x}+\sqrt{2x}+1+2x-\sqrt{2x}+x\sqrt{2}+\sqrt{x}-2x+1}{2x-1}:\dfrac{2x-1+x\sqrt{2}-\sqrt{x}+\sqrt{2x}-1-\left(2x+\sqrt{2x}+x\sqrt{2}+\sqrt{x}\right)}{2x-1}\)
\(=\dfrac{2x\sqrt{2}+2\sqrt{x}+2}{-2-2\sqrt{x}}\)
cho M= \(\left(\dfrac{\sqrt{x}+1}{\sqrt{2x}+1}+\dfrac{\sqrt{2x}+\sqrt{x}}{\sqrt{2x}-1}-1\right)\div\left(1+\dfrac{\sqrt{x}}{\sqrt{2x}+1}-\dfrac{\sqrt{2x}+\sqrt{x}}{\sqrt{2x}-1}\right)\)
a) rút gọn M
b) tính giá trị của M khi \(x=\dfrac{1}{3}\left(3+2\sqrt{2}\right)\)
c) tìm tất cả các giá trị của x sao cho B=x-4
d) tìm khoảng giá trị của x sao cho B <\(-\dfrac{2}{3}\)
Lm nhanh giúp mk nhé mk đang cần gấp
a) Ta có: \(M=\left(\dfrac{\sqrt{x}+1}{\sqrt{2x}+1}+\dfrac{\sqrt{2x}+\sqrt{x}}{\sqrt{2x}-1}-1\right):\left(1+\dfrac{\sqrt{x}}{\sqrt{2x}+1}-\dfrac{\sqrt{2x}+\sqrt{x}}{\sqrt{2x}-1}\right)\)
\(=\left(\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{2x}-1\right)+\sqrt{x}\left(\sqrt{2x}+1\right)^2-2x+1}{\left(\sqrt{2x}+1\right)\left(\sqrt{2x}-1\right)}\right):\left(\dfrac{2x-1+\sqrt{x}\left(\sqrt{2x}-1\right)-\sqrt{x}\left(\sqrt{2x}+1\right)^2}{\left(\sqrt{2x}+1\right)\left(\sqrt{2x}-1\right)}\right)\)
\(=\dfrac{x\sqrt{2}-\sqrt{x}+\sqrt{2x}-1+\sqrt{x}\left(2x+2\sqrt{2x}+1\right)-2x+1}{2x-1+x\sqrt{2}-\sqrt{x}-\sqrt{x}\left(2x+2\sqrt{2x}+1\right)}\)
\(=\dfrac{x\sqrt{2}-\sqrt{x}+\sqrt{2x}-2x+2x\sqrt{x}+2\sqrt{2x}+\sqrt{x}}{2x-1+x\sqrt{2}-\sqrt{x}-2x\sqrt{x}-2\sqrt{2x}-\sqrt{x}}\)
\(=\dfrac{x\sqrt{2}+3\sqrt{2x}-2x+2x\sqrt{x}}{x\sqrt{2}-2\sqrt{2x}+2x-2\sqrt{x}-2x\sqrt{x}}\)
giải pt
a) \(\sqrt{x+2\sqrt{x-1}}+3\sqrt{x+8-6\sqrt{x-1}}=1-x\)
b) \(\sqrt{x\sqrt{x-1}-2x+2}+\sqrt{\left(x+3\right)\sqrt{x-1}-4x+4}=\sqrt{x-1}\)
c) \(\sqrt{14x+14\sqrt{14x-49}}+\sqrt{14x-14\sqrt{14x-49}}=14\)
d) \(\sqrt{2x-2\sqrt{2x-1}}-2\sqrt{2x+3-4\sqrt{2x-1}}+3\sqrt{2x+8-6\sqrt{2x-1}}=4\)
a/ ĐKXĐ: \(x\ge1\)
Khi \(x\ge1\) ta thấy \(\left\{{}\begin{matrix}VT>0\\VP=1-x\le0\end{matrix}\right.\) nên pt vô nghiệm
b/ \(x\ge1\)
\(\sqrt{\sqrt{x-1}\left(x-2\sqrt{x-1}\right)}+\sqrt{\sqrt{x-1}\left(x+3-4\sqrt{x-1}\right)}=\sqrt{x-1}\)
\(\Leftrightarrow\sqrt{\sqrt{x-1}\left(\sqrt{x-1}-1\right)^2}+\sqrt{\sqrt{x-1}\left(\sqrt{x-1}-2\right)^2}=\sqrt{x-1}\)
Đặt \(\sqrt{x-1}=a\ge0\) ta được:
\(\sqrt{a\left(a-1\right)^2}+\sqrt{a\left(a-2\right)^2}=a\)
\(\Leftrightarrow\left[{}\begin{matrix}a=0\Rightarrow x=1\\\sqrt{\left(a-1\right)^2}+\sqrt{\left(a-2\right)^2}=\sqrt{a}\left(1\right)\end{matrix}\right.\)
\(\Leftrightarrow\left|a-1\right|+\left|a-2\right|=\sqrt{a}\)
- Với \(a\ge2\) ta được: \(2a-3=\sqrt{a}\Leftrightarrow2a-\sqrt{a}-3=0\Rightarrow\left[{}\begin{matrix}\sqrt{a}=-1\left(l\right)\\\sqrt{a}=\frac{3}{2}\end{matrix}\right.\)
\(\Rightarrow a=\frac{9}{4}\Rightarrow\sqrt{x-1}=\frac{9}{4}\Rightarrow...\)
- Với \(0\le a\le1\) ta được:
\(1-a+2-a=\sqrt{a}\Leftrightarrow2a+\sqrt{a}-3=0\Rightarrow\left[{}\begin{matrix}a=1\\a=-\frac{3}{2}\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{x-1}=1\Rightarrow...\)
- Với \(1< a< 2\Rightarrow a-1+2-a=\sqrt{a}\Leftrightarrow a=1\left(l\right)\)
c/ ĐKXĐ: \(x\ge\frac{49}{14}\)
\(\Leftrightarrow\sqrt{14x-49+14\sqrt{14x-49}+49}+\sqrt{14x-49-14\sqrt{14x-49}+49}=14\)
\(\Leftrightarrow\sqrt{\left(\sqrt{14x-49}+7\right)^2}+\sqrt{\left(\sqrt{14x-49}-7\right)^2}=14\)
\(\Leftrightarrow\left|\sqrt{14x-49}+7\right|+\left|7-\sqrt{14x-49}\right|=14\)
Mà \(VT\ge\left|\sqrt{14x-49}+7+7-\sqrt{14x-49}\right|=14\)
Nên dấu "=" xảy ra khi và chỉ khi:
\(7-\sqrt{14x-49}\ge0\)
\(\Leftrightarrow14x-49\le49\Leftrightarrow x\le7\)
Vậy nghiệm của pt là \(\frac{49}{14}\le x\le7\)
d/ ĐKXĐ: \(x\ge\frac{1}{2}\)
\(\Leftrightarrow\sqrt{\left(\sqrt{2x-1}-1\right)^2}-2\sqrt{\left(\sqrt{2x-1}-2\right)^2}+3\sqrt{\left(\sqrt{2x-1}-3\right)^2}=4\)
\(\Leftrightarrow\left|\sqrt{2x-1}-1\right|-2\left|\sqrt{2x-1}-2\right|+3\left|\sqrt{2x-1}-3\right|=4\)
TH1: \(\sqrt{2x-1}\ge3\Rightarrow x\ge5\)
\(\sqrt{2x-1}-1-2\sqrt{2x-1}+4+3\sqrt{2x-1}-9=4\)
\(\Leftrightarrow\sqrt{2x-1}=5\)
\(\Leftrightarrow x=13\)
TH2: \(2\le\sqrt{2x-1}< 3\Rightarrow\frac{5}{2}\le x< 5\)
\(\sqrt{2x-1}-1-2\sqrt{2x-1}+4+3\left(3-\sqrt{2x-1}\right)=4\)
\(\Leftrightarrow\sqrt{2x-1}=2\Rightarrow x=\frac{5}{2}\)
TH3: \(1\le\sqrt{2x-1}< 2\Rightarrow1\le x< \frac{5}{2}\)
\(\sqrt{2x-1}-1-2\left(2-\sqrt{2x-1}\right)+3\left(3-\sqrt{2x-1}\right)=4\)
\(\Leftrightarrow4=4\) (luôn đúng)
TH4: \(\frac{1}{2}\le x< 1\)
\(1-\sqrt{2x-1}-2\left(2-\sqrt{2x-1}\right)+3\left(3-\sqrt{2x-1}\right)=4\)
\(\Leftrightarrow\sqrt{2x-1}=1\Rightarrow x=1\left(l\right)\)
Vậy nghiệm của pt là: \(\left[{}\begin{matrix}1\le x\le\frac{5}{2}\\x=13\end{matrix}\right.\)
Cho biểu thức
P = ( \(\dfrac{\sqrt{x}+1}{\sqrt{2x}+1}+\dfrac{\sqrt{2x}+\sqrt{x}}{\sqrt{2x}-1}-1\)) :(\(1+\dfrac{\sqrt{x}+1}{\sqrt{2x}+1}-\dfrac{\sqrt{2x}+\sqrt{x}}{\sqrt{2x}-1}\))
Rút gọn P
ai giúp mình giải bài này với được k mình đang cần gấp ( xin cảm ơn)
Bài 1:
a,\(\sqrt{3x+4}-\sqrt{2x+1}=\sqrt{x+3}\)
b, \(\sqrt{2x-5}+\sqrt{x+2}=\sqrt{2x+1}\)
c, \(\sqrt{x+4}-\sqrt{1-x}=\sqrt{1-2x}\)
d, \(\sqrt{x+9}=5-\sqrt{2x+4}\)
Bài 2:
a,\(\sqrt{x+4\sqrt{x}+4}=5x+2\)
b, \(\sqrt{x^2-2x+1}+\sqrt{x^2+4x+4}=4\)
c, \(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}=2\)
d,\(\sqrt{x-2+\sqrt{2x-5}}+\sqrt{x+2+3\sqrt{2x-5}}=7\sqrt{2}\)
Bài 3:
a, \(x^2-7x=6\sqrt{x+5}-30\)
b, \(\sqrt{1-x^2}+\sqrt{x+1}=0\)
c, \(x+y+4=2\sqrt{x-2}+4\sqrt{y-3}+6\sqrt{-5}\)( câu này có thể sai đề nha )
d, \(x^2+2x-\sqrt{x^2+2x+1}-5=0\)