Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Easylove
Xem chi tiết
DƯƠNG PHAN KHÁNH DƯƠNG
7 tháng 3 2020 lúc 11:35

Ta có : \(\left\{{}\begin{matrix}a,b,c\ge0\\a+b+c=1\end{matrix}\right.\Rightarrow a\le1\Leftrightarrow a^2\le a\)

\(VT=\sqrt{4a+4.1+1}+\sqrt{4b+4.1+1}+\sqrt{4c+4.1+1}\ge\sqrt{4a^2+4a+1}+\sqrt{4b^2+4b+1}+\sqrt{4c^2+4c+1}\)

\(=2a+1+2b+1+2c+1=7\) .

Vậy đẳng thức được chứng minh . Dấu \("="\Leftrightarrow a=1;b=0;c=0\) và hoán vị

Khách vãng lai đã xóa
LIVERPOOL
Xem chi tiết
o0o I am a studious pers...
28 tháng 5 2017 lúc 15:28

Đề sai kìa bạn 

Thử với giá trị nhỏ nhất :

\(\sqrt{5.0+4}+\sqrt{5.0+4}+\sqrt{5.0+4}=2+2+2+=6< 7\)

Chưa nhìn cũng biết câu 2 sai lun

LIVERPOOL
28 tháng 5 2017 lúc 19:40

Quên, thiếu a+b+c=1

Loz Hồ
Xem chi tiết
Thị Huyền Trang Nguyễn
15 tháng 12 2017 lúc 11:22

Vì a,b,c không âm và có tổng bằng 1 nên

\(0\le a,b,c\le\left\{{}\begin{matrix}a\left(1-a\right)\ge0\\b\left(1-b\right)\ge0\\c\left(1-c\right)\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a\ge a^2\\b\ge b^2\\c\ge c^2\end{matrix}\right.\)

Suy ra \(\sqrt{5a+4}\ge\sqrt{a^2+4a+4}=\sqrt{\left(a+2\right)^2}=a+2\)

Tương tự ta có: \(\sqrt{5b+4}\ge b+2;\sqrt{5c+4}\ge c+2\)

Do đó: \(\sqrt{5a+4}+\sqrt{5b+4}+\sqrt{5c+4}\ge\left(a+b+c\right)+6=7\) (điều phải chứng minh)

Nguyen
24 tháng 10 2019 lúc 21:14

CÁCH KHÁC:

Giả sử \(\Sigma_{cyc}\sqrt{5a+4}< 7\)

Có:\(\sqrt{5a+4}\le\sqrt{\frac{3}{17}}.\frac{5a+4+\frac{17}{3}}{2}=\sqrt{\frac{3}{17}}.\frac{5a+\frac{29}{3}}{2}\)\(=\sqrt{\frac{3}{17}}.\left(\frac{5}{2}a+\frac{29}{6}\right)\)

\(\Rightarrow VT\le\sqrt{\frac{3}{17}}\left[\frac{5}{2}\Sigma a+\frac{29}{2}\right]\)\(=\sqrt{51}>7\)

Ta thấy dấu = có xảy ra (!)
Vậy ta có đpcm.

#Walker

Khách vãng lai đã xóa
quangduy
Xem chi tiết
 Mashiro Shiina
18 tháng 3 2019 lúc 19:51

\(a;b;c\ge0;a+b+c=1\Rightarrow a;b;c\le1\)

\(\Rightarrow\left\{{}\begin{matrix}a^2\le a\\b^2\le b\\c^2\le c\end{matrix}\right.\)

\(\sqrt{5a+4}+\sqrt{5b+4}+\sqrt{5c+4}\)

\(=\sqrt{a+4a+4}+\sqrt{b+4b+4}+\sqrt{c+4c+4}\)

\(\ge\sqrt{a^2+4a+4}+\sqrt{b^2+4b+4}+\sqrt{c^2+4c+4}=\sqrt{\left(a+2\right)^2}+\sqrt{\left(b+2\right)^2}+\sqrt{\left(c+2\right)^2}\)

\(=a+b+c+2+2+2=7\)

\("="\Leftrightarrow a;b;c\) là hoán vị của (0;0;1)

Witch Rose
Xem chi tiết
Kurosaki Akatsu
6 tháng 6 2017 lúc 19:01

Tìm trước khi hỏi : 

Đề vòng 1 chuyên sư phạm 2016-2017 - Tài liệu - Đề thi - Diễn đàn Toán học

Thành viên
6 tháng 6 2017 lúc 19:09

Witch Rose

a,b,c" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal; word-wrap:normal" class="MathJax_CHTML mjx-chtml"> không âm và  nên 

a,b&#x2265;0&#x21D2;25ab+20(a+b)+16&#x2265;20(a+b)+16" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal; word-wrap:normal" class="MathJax_CHTML mjx-chtml">

&#x21D4;(5a+4)(5b+4)&#x2265;4(5a+5b+4)" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal; word-wrap:normal" class="MathJax_CHTML mjx-chtml">

&#x21D4;(5a+4+5b+4)2&#x2265;(2+5a+5b+4)2" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal; word-wrap:normal" class="MathJax_CHTML mjx-chtml">

&#x21D4;5a+4+5b+4&#x2265;2+9&#x2212;5c=2+13&#x2212;t2" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal; word-wrap:normal" class="MathJax_CHTML mjx-chtml">

tth_new
16 tháng 5 2019 lúc 10:41

Em nghĩ đề là \(a,b,c\ge0\) thì dấu "=" mới xảy ra chứ ạ?Nếu như thế thì có lẽ là như vầy:

Do \(a,b,c\ge0\) và \(a+b+c=1\Rightarrow0\le a;b;c\le1\) (1)

Ta sẽ c/m BĐT phụ: \(\sqrt{5a+4}\ge a+2\)

\(\Leftrightarrow5a+4\ge a^2+4a+4\)

\(\Leftrightarrow a^2-a\le0\Leftrightarrow a\left(a-1\right)\le0\Leftrightarrow0\le a\le1\) (đúng theo (1)

Tương tự với 2 BĐT còn lại và cộng theo vế ta được: \(VT\ge\left(a+b+c\right)+6=7^{\left(đpcm\right)}\)

Nguyễn Hoàng Nam Anh
Xem chi tiết
Nguyễn Trọng Kiên
27 tháng 10 2016 lúc 21:29

bài này sai đề vì ta làm dấu bằng xảy ra khi a=b=c=\(\frac{1}{3}\).sau đó thay vào biểu thức cần cm thì sẽ thấy vô lí

alibaba nguyễn
27 tháng 10 2016 lúc 23:25

Đề sai rồi bạn

Nguyễn Hoàng Nam Anh
28 tháng 10 2016 lúc 6:51

đè ko sai đâu.

Mai Nhâm Thị Ngọc
Xem chi tiết
Game Master VN
9 tháng 7 2017 lúc 16:29

ai k mình k lại [ chỉ 3 người đầu tiên mà trên 10 điểm hỏi đáp ]

Lionel Messi
Xem chi tiết
Đặng Thị Thu Thảo
Xem chi tiết
Trần Minh Hoàng
22 tháng 1 2021 lúc 18:14

Do \(a,b,c\geq 0\) và \(a+b+c=1\) nên \(a,b,c\le1\).

Xét hiệu \(5a+4-\left(a+2\right)^2=a\left(1-a\right)\ge0\)

\(\Rightarrow5a+4\ge\left(a+2\right)^2\)

\(\Rightarrow\sqrt{5a+4}\ge a+2\).

Tương tự, \(\sqrt{5b+4}\ge b+2;\sqrt{5c+4}\ge c+2\).

Cộng vế với vế ta có \(T\ge a+b+c+6=7\).

Đẳng thức xảy ra khi a = 1; b = c = 0 và các hoán vị.

Vậy Min T = 7 khi a = 1; b = c = 0. 

tthnew
22 tháng 1 2021 lúc 18:21

Một ý tưởng để có được bất đẳng thức phụ \(\sqrt{5a+4}\ge a+2\forall0\le a\le1.\)

Do $0\leq a \leq 1$ nên $a\ge a^2.$

Ta có: \(\sqrt{5a+4}=\sqrt{a+4a+4+\ 4}\ge\sqrt{a^2+4a+4+4}=a+2\)

Ngoài ra còn một cách là giả sử \(\sqrt{5a+4}\ge ma+n\)

rồi đi chọn $m,n$ theo điểm rơi.

Không biết còn cách nào khác không nhỉ?