Bài 1: Rút gọn
B= x^2.(11x-2) + x^2.(x-1) - 3x.(4x^2 - x - 2)
Cho biểu thức B=(x/x^2-x-6 - x-1/3x^2-4x-15):x^4-2x^2+1/3x^2+11x+10. Rút gọn B
\(y=\frac{\frac{^x}{x^2}-x-6-x-\frac{1}{3}x^2-4x-15}{x^4}-2x^2+\frac{1}{3}x^2+11x+10b\)
\(y=\frac{-\left(5x^7-33x^6-30bx^5+x^3+18x^2+63x-3\right)}{3x^5}\)
Cho biểu thức B=(x/x^2-x-6 - x-1/3x^2-4x-15) : x^4-2x^2+1/3x^2+11x+10. Rút gọn B
rút gọn
B\(\left(\frac{x}{x^2-x-6}-\frac{x-1}{3x^2-4x-15}\right):\frac{x^4-2x^2+1}{3x^2+11x+10}.\left(x^2-2x+1\right)\)
Chép đề đúng chưa bạn? 2 phân số đầu có ngoặc không vậy?
Bạn tự tìm ĐKXĐ nhé!
\(B=\left(\frac{x}{x^2-x-6}-\frac{x-1}{3x^2-4x-15}\right):\frac{x^4-2x^2+1}{3x^2+11x+10}.\left(x^2-2x+1\right)\)
\(=\left(\frac{x}{\left(x-3\right)\left(x+2\right)}-\frac{x-1}{\left(x-3\right)\left(3x+5\right)}\right):\frac{\left(x^2-1\right)^2}{\left(3x+5\right)\left(x+2\right)}.\left(x-1\right)^2\)
\(=\left(\frac{\left(3x+5\right)x}{\left(x-3\right)\left(x+2\right)\left(3x+5\right)}-\frac{\left(x-1\right)\left(x+2\right)}{\left(x-3\right)\left(3x+5\right)\left(x+2\right)}\right).\frac{\left(3x+5\right)\left(x+2\right)}{\left(x-1\right)^2\left(x+1\right)^2}.\left(x-1\right)^2\)
\(=\frac{3x^2+5x-\left(x^2+2x-x-2\right)}{\left(x-3\right)\left(x+2\right)\left(3x+5\right)}.\frac{\left(3x+5\right)\left(x+2\right)}{\left(x+1\right)^2}\)
\(=\frac{3x^2+5x-x^2-2x+x+2}{\left(x-3\right)\left(x+1\right)^2}\)
\(=\frac{2x^2+4x+2}{\left(x-3\right)\left(x+1\right)^2}\)
\(=\frac{2\left(x+1\right)^2}{\left(x-3\right)\left(x+1\right)^2}\)
\(=\frac{2}{x-3}\)
Vậy...
Cho biểu thức C = (\(\dfrac{x}{x^2-x-6}\)-\(\dfrac{x-1}{3x^2-4x-15}\)) : \(\dfrac{x^4-2x^2+1}{3x^2+11x+10}\).(\(x^2\)-\(2x\)+1)
a) Rút gọn C
b)Tìm GTBT C với x = 2003
c) CMR C>0 khi x>3
a) \(C=\left(\dfrac{x}{x^2-x-6}-\dfrac{x-1}{3x^2-4x-15}\right):\dfrac{x^4-2x^2+1}{3x^2+11x+10}\cdot\left(x^2-2x+1\right)\) (ĐK: \(x\ne-\dfrac{5}{3};x\ne3;x\ne-2;x\ne1\))
\(C=\left[\dfrac{x}{\left(x-3\right)\left(x+2\right)}-\dfrac{x-1}{\left(x-3\right)\left(3x+5\right)}\right]:\dfrac{\left(x^2-1\right)^2}{\left(3x+5\right)\left(x+2\right)}\cdot\left(x-1\right)^2\)
\(C=\left[\dfrac{x\left(3x+5\right)}{\left(3x+5\right)\left(x+2\right)\left(x-3\right)}-\dfrac{\left(x-1\right)\left(x+2\right)}{\left(x-3\right)\left(3x+5\right)\left(x+2\right)}\right]\cdot\dfrac{\left(3x+5\right)\left(x+2\right)}{\left(x^2-1\right)^2\left(x-1\right)^2}\)
\(C=\dfrac{3x^2+5x-x^2-2x+x+2}{\left(3x+5\right)\left(x+2\right)\left(x-3\right)}\cdot\dfrac{\left(3x+5\right)\left(x+2\right)}{\left(x^2-1\right)^2\left(x-1\right)^2}\)
\(C=\dfrac{2x^2+4x+2}{\left(3x+5\right)\left(x+2\right)\left(x-3\right)}\cdot\dfrac{\left(3x+5\right)\left(x+2\right)}{\left(x+1\right)^2\left(x-1\right)^4}\)
\(C=\dfrac{2\left(x+1\right)^2}{\left(3x+5\right)\left(x-3\right)\left(x+2\right)}\cdot\dfrac{\left(3x+5\right)\left(x+2\right)}{\left(x+1\right)^2\left(x-1\right)^4}\)
\(C=\dfrac{2}{\left(x-1\right)^4\left(x-3\right)}\)
b) Thay x = 2003 ta có:
\(C=\dfrac{2}{\left(2003-1\right)^4\left(2003-3\right)}=\dfrac{2}{2002^4\cdot2000}=\dfrac{1}{2002^4\cdot1000}\)
c) \(C>0\) khi:
\(\dfrac{2}{\left(x-1\right)^4\left(x-3\right)}>0\) mà: \(\left\{{}\begin{matrix}2>0\\\left(x-1\right)^4>0\end{matrix}\right.\)
\(\Leftrightarrow x-3>0\)
\(\Leftrightarrow x>3\) (đpcm)
BÀI 1 RÚT GỌN CÁC BIỂU THỨC SAU
a)(3x-2)(9x²+6x+4)-3(9x³-2)
b)(x²+4)(x+2)(x-2)-(x²+3)(x²-3)
c)(x+1)³-(x-1)(x²+x+1)-3x(x+1)
BÀI 2 CMR
a)-4x²-4x-2<0 với mọi x
Em ơi mình đăng bài sang bên môn toán nha
BÀI 1 RÚT GỌN CÁC BIỂU THỨC SAU
a)(3x-2)(9x²+6x+4)-3(9x³-2)
b)(x²+4)(x+2)(x-2)-(x²+3)(x²-3)
c)(x+1)³-(x-1)(x²+x+1)-3x(x+1)
BÀI 2 CMR
a)-4x²-4x-2<0 với mọi x
Bài 3: Cho hai đa thức:
P(x)= \(2x^3-2x+x^2+3x+2\)
Q(x)= \(4x^3-3x^2-3x+4x-3x^3+4x^2+1\)
a) Rút gọn P(x),Q(x)
b) Chứng tỏ x=-1 là nghiệm của P(x),Q(x)
a: \(P\left(x\right)=2x^3+x^2+x+2\)
\(Q\left(x\right)=x^3+x^2+x+1\)
b: \(P\left(-1\right)=2\cdot\left(-1\right)+1-1+2=0\)
\(Q\left(-1\right)=-1+1-1+1=0\)
Do đó: x=-1 là nghiệm chung của P(x), Q(x)
\(P\left(x\right)=2x^3-2x+x^2+3x+2\)
\(P\left(x\right)=2x^3+x^2+x+2\)
\(Q\left(x\right)=4x^3-3x^2-3x+4x-3x^3+4x^2+1\)
\(Q\left(x\right)=x^3+x^2+x+1\)
__________________________________________________
\(P\left(-1\right)=2.\left(-1\right)^3+\left(-1\right)^2+\left(-1\right)+2\)
\(P\left(-1\right)=0\)
\(Q\left(-1\right)=\left(-1\right)^3+\left(-1\right)^2+\left(-1\right)+1\)
\(Q\left(-1\right)=0\)
Vậy x = -1 là nghiệm của P(x),Q(x)
a, `P(x) = 2x^3 + x^2 + x + 2`.
`Q(x) = x^3 + x^2 + x + 1`.
`P(-1) = 0`
`Q(-1) = 0`
`=>` `-1` là nghiệm chung của `2` đa thức trên.
Bài 3. Rút gọn các đa thức sau
a/ (2x-3)(4x^2+6x+9)- (2x+1)(4x^2 - 2x +1)
b/ (x+ 2)(x^2- 2x+4) – (x^3- 2)
c/ (3x+ 5)(9x^2 - 15x +25)- 3x(3x-1)(3x+1)
d/ x^6 - (x^2 + x +1)(x^2 - 1)(x^2 - x+ 1)
a/ 2x\(^{^{ }3}\)-3\(^{^{ }3}\)-2x\(^3\)-1\(^{^{ }3}\)=-28
b/x\(^{^{ }3}\)+2\(^{^{ }3}\)-x\(^3\)+2=10
c/3x\(^3\)+5\(^3\)-3x(3x\(^2\)-1)=3x\(^3\)+5\(^3\)-3x\(^3\)+3x=125+3x
d/ x\(^6\)-(x\(^3\)+1)(x\(^2\)-x+1)= x\(^6\)-(x\(^6\)-x\(^4\)+x\(^3\)+x\(^2\)-x+1)=x\(^4\)-x\(^3\)-x\(^2\)+x-1
bài 1 rút gọn biểu thức
a) (2x-5)^2-4x(x+3)
b) (x-2)^3 -6(x+4)(x-4)-(x-2)(x^2+2x+4)
c)(x-1)^2-2(x-1)(x+2)+(x+2)^2+5(2x-3)
bài 2 rút gọn biểu thức
a)(2-3x)^2-5x(x-4)+4(x-1)
b)(3-x)(x^2+3x+9)+(x-3)^3
c)(x-4)^2(x+4)-(x-4)(x+4)^2+3(x^2-16)
1:
a: \(\left(2x-5\right)^2-4x\left(x+3\right)\)
\(=4x^2-20x+25-4x^2-12x\)
=-32x+25
b: \(\left(x-2\right)^3-6\left(x+4\right)\left(x-4\right)-\left(x-2\right)\left(x^2+2x+4\right)\)
\(=x^3-6x^2+12x-8-\left(x^3-8\right)-6\left(x^2-16\right)\)
\(=-6x^2+12x-6x^2+96=-12x^2+12x+96\)
c: \(\left(x-1\right)^2-2\left(x-1\right)\left(x+2\right)+\left(x+2\right)^2+5\left(2x-3\right)\)
\(=\left(x-1-x-2\right)^2+5\left(2x-3\right)\)
\(=\left(-3\right)^2+5\left(2x-3\right)\)
\(=9+10x-15=10x-6\)
2:
a: \(\left(2-3x\right)^2-5x\left(x-4\right)+4\left(x-1\right)\)
\(=9x^2-12x+4-5x^2+20x+4x-4\)
\(=4x^2+12x\)
b: \(\left(3-x\right)\left(x^2+3x+9\right)+\left(x-3\right)^3\)
\(=27-x^3+x^3-9x^2+27x-27\)
\(=-9x^2+27x\)
c: \(\left(x-4\right)^2\left(x+4\right)-\left(x-4\right)\left(x+4\right)^2+3\left(x^2-16\right)\)
\(=\left(x-4\right)\left(x+4\right)\left(x-4-x-4\right)+3\left(x^2-16\right)\)
\(=\left(x^2-16\right)\left(-8\right)+3\left(x^2-16\right)\)
\(=-5\left(x^2-16\right)=-5x^2+80\)
Rút gọn biểu thức;
a) (2x-1)2 - (x+2)2 - 3x2 + 5x
b) (x+2) . ( x-1) + 2 (3x-2)2 + 4x -19x2
c) 2 (3-x) . (x-2) -( 3x+1)2 + 5x - 11x2
a) \(\left(2x-1\right)^2-\left(x+2\right)^2-3x^2+5x\)
\(=4x^2-4x+1-\left(x^2+4x+4\right)-3x^2+5x\)
\(=x^2-3x-3\)
b) \(\left(x+2\right)\left(x-1\right)+2\left(3x-2\right)^2+4x-19x^2\)
\(=x^2+2x-x-2+2\left(9x^2-12x+4\right)+4x-19x^2\)
\(=x^2+2x-x-2+18x^2-24x+8+4x-19x^2\)
\(=-19x+6\)
c) \(2\left(3-x\right)\left(x-2\right)-\left(3x+1\right)^2+5x-11x^2\)
\(=6-2x\left(x-2\right)-\left(9x^2+6x+1\right)+5x-11x^2\)
\(=6-2x^3+4x-9x^2-6x-1+5x-11x^2\)
\(=-2x^3-20x^2+3x+5\)