Rút gọn : \(P=\sqrt{14+\sqrt{40}+\sqrt{56}+\sqrt{140}}\)
Rút gọn :
\(A=\sqrt{\frac{4-\sqrt{14}}{4+\sqrt{14}}}-\sqrt{\frac{4+\sqrt{14}}{4-\sqrt{14}}}\) .
Cho P = \(\sqrt{,14+\sqrt{40}+\sqrt{56}+\sqrt{140}}\)
Rút gọn
\(\sqrt{|40\sqrt{2}-57|}-\sqrt{40\sqrt{2}+57}\)
GIẢI CHI TIẾT GIÚP MIK NHA CHÌU MIK IK HỌC ÒI
tính :
A=\(\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
B=\(\sqrt{14+\sqrt{40}+\sqrt{56}+\sqrt{140}}\)
\(A=\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{4}+\sqrt{6}+\sqrt{8}+\sqrt{4}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{4}+\sqrt{2}\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=1+\sqrt{2}\)
B=\(\sqrt{14+2\sqrt{10}+2\sqrt{14}+2\sqrt{35}}\)
B=\(\sqrt{7+5+2+2\sqrt{2.5}+2\sqrt{2.7}+2\sqrt{7.5}}\)
B=\(\left(\sqrt{\sqrt{7}+\sqrt{5}+\sqrt{2}}\right)^2\)
B=\(\sqrt{7}+\sqrt{5}+\sqrt{2}\)
Cho \(P=\sqrt{14+\sqrt{40}+\sqrt{56}+\sqrt{140}}\) . Hãy biểu diễn P dưới dạng tổng của 3 căn thức bậc 2
\(P=\sqrt{\left(\sqrt{2}+\sqrt{5}+\sqrt{7}\right)^2}=\left|\sqrt{2}+\sqrt{5}+\sqrt{7}\right|=\sqrt{2}+\sqrt{5}+\sqrt{7}\)
Cho \(P=\sqrt{14+\sqrt{40}+\sqrt{56}+\sqrt{140}}\)
Được biểu diễn dưới dạng: \(P=\sqrt{a}+\sqrt{b}+\sqrt{c}\)
Tính a+b+c
Ta có
\(P=\sqrt{14+2\sqrt{10}+2\sqrt{14}+2\sqrt{35}}\)
\(\Leftrightarrow P=\sqrt{\left(\sqrt{5}+\sqrt{2}+\sqrt{7}\right)^2}\)
\(\Leftrightarrow P=\sqrt{5}+\sqrt{2}+\sqrt{7}\)
Mà \(P=\sqrt{a}+\sqrt{b}+\sqrt{c}=\sqrt{5}+\sqrt{2}+\sqrt{7}\)
Suy ra \(a+b+c=5+2+7=14\)
RÚT GỌN BIỂU THỨC
A=\(4-\sqrt{21-8\sqrt{5}}\)
B=\(\sqrt{4-2\sqrt{3}+1}\)
C=\(\sqrt{8+2\sqrt{15}}-\sqrt{5-2\sqrt{6}}\)
D=\(\sqrt{28-10\sqrt{3}}+\sqrt{4+2\sqrt{3}}\)
E=\(\sqrt{14-6\sqrt{5}}-\sqrt{21-8\sqrt{5}}\)
F=\(\sqrt{19-2\sqrt{40}}-\sqrt{19+3\sqrt{40}}\)
\(A=4-\sqrt{21-8\sqrt{5}}=4-\sqrt{4^2-8\sqrt{5}+\left(\sqrt{5}\right)^2}.\)
\(A=4-\sqrt{\left(4-\sqrt{5}\right)^2}=4-\left(4-\sqrt{5}\right)\)
=> \(A=\sqrt{5}\)
P=\(\sqrt{14+\sqrt{40}+\sqrt{56}+\sqrt{140}}\)duoc bieu dien duoi dang tong cua 3 can thuc bac hai nhu sau P=\(\sqrt{a}+\sqrt{b}+\sqrt{c}\)
khi do a+b+c=?
P=\(\sqrt{14+\sqrt{40}+\sqrt{56}+\sqrt{140}}\)=\(\sqrt{2+5+7+2\sqrt{5.2}+2\sqrt{2.7}+2\sqrt{3.5}}\)
=\(\sqrt{\left(\sqrt{2}+\sqrt{5}+\sqrt{7}\right)^2}\)=\(\sqrt{2}+\sqrt{5}+\sqrt{7}\)=\(\sqrt{a}+\sqrt{b}+\sqrt{c}\)
Vậy a+b+c=14
\(\sqrt{14+\sqrt{40}+\sqrt{56}+\sqrt{140}}\) được biểu diễn dưới dạng tổng 3 căn thức bậc 2 như sau: P=\(\sqrt{a}+\sqrt{b}+\sqrt{c}\). khi đó a+b+c=.......
\(\sqrt{14+\sqrt{40}+\sqrt{56}+\sqrt{140}}\)
\(=\sqrt{2+5+7+2\sqrt{2.5}+2\sqrt{2.7}+2\sqrt{5.7}}\)
\(=\sqrt{\left(\sqrt{2}+\sqrt{5}+\sqrt{7}\right)^2}=\sqrt{2}+\sqrt{5}+\sqrt{7}\)
\(\Rightarrow a+b+c=2+5+7=14\)