Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
lạc lõng giữa dòng đời t...
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 3 2022 lúc 20:17

\(\Leftrightarrow\left(2x+5\right)\left(x-3\right)-\left(x-3\right)\left(x+3\right)=0\)

=>(x-3)(2x+5-x-3)=0

=>(x-3)(x+2)=0

=>x=3 hoặc x=-2

Kỳ Anh Hồ Trương
8 tháng 3 2022 lúc 20:22

     x2-9=(x-3)(2x-5)
(=) (x-3)(x+3)=(x-3)(2x-5)

(=) (x-3)(x+3)-(x-3)(2x-5)=0

(=) (x-3)(x+3-2x+5)=0
(=) (x-3)(8-x)=0

(=)x-3=0 hoặc 8-x=0

(=)x=0 hoặc x=8

Vậy S=\(\left\{0;8\right\}\)

Gia Huy
4 tháng 7 2023 lúc 6:49

\(x^2+\sqrt{x+1}=1\)

Giải:

ĐK: \(x\ge-1\)

PT tương đương với: \(\sqrt{x+1}=1-x^2\)

\(\Leftrightarrow\left\{{}\begin{matrix}1-x^2\ge0\\x+1=1-2x^2+x^4\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}-1\le x^2\le1\\x^4-2x^2-x=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}-1\le x\le1\\\left\{{}\begin{matrix}x=0\left(TM\right)\\x^3-2x-1=0\end{matrix}\right.\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}-1\le x\le1\\\left[{}\begin{matrix}x=0\\x=-1\\x^2-x-1=0\end{matrix}\right.\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\\x=\dfrac{1-\sqrt{5}}{2}\end{matrix}\right.\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
27 tháng 6 2019 lúc 10:19

x < 1 hoặc x > 2

trần
Xem chi tiết
trần
3 tháng 9 2018 lúc 13:36

giải giúp mik vs các bn ơi

hya_seije_jaumeniz
3 tháng 9 2018 lúc 13:41

\(x^2-8x+16< 0\)

\(\Leftrightarrow\left(x-4\right)^2< 0\)

\(\Rightarrow\)vô lí 

KAl(SO4)2·12H2O
3 tháng 9 2018 lúc 13:46

a) x2 - 8x + 16 < 0

<=> (x - 4)2 < 0

<=> (x - 4 < 0) hoặc (x - 4 > 0)

<=> (x < 4) hoặc (x - 4 > 0)

<=> (x < 4) hoặc (x > 4)

=> vô lý \(\forall x\inℝ\)

Nhân Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 2 2023 lúc 13:33

=>\(\left(\dfrac{x^2-8}{2008}-1\right)+\left(\dfrac{x^2-7}{2009}-1\right)=\left(\dfrac{x^2-6}{2010}-1\right)+\left(\dfrac{x^2-5}{2011}-1\right)\)

=>x^2-2016=0

=>x^2=2016

=>\(x=\pm\sqrt{2016}\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
26 tháng 12 2017 lúc 5:01

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
30 tháng 9 2023 lúc 23:31

a) Tam thức \(f(x) =  - 5{x^2} + x - 1\) có \(\Delta  =  - 19 < 0\), hệ số \(a =  - 5 < 0\) nên f(x) luôn âm (cùng dấu với a) với mọi x, tức là \(\)\( - 5{x^2} + x - 1 < 0\) với mọi \(x \in \mathbb{R}\). Suy ra bất phương trình có vô số nghiệm

b) Tam thức \(g(x) = {x^2} - 8x + 16\) có \(\Delta  = 0\), hệ số a=1>0 nên g(x) luôn dương (cùng dấu với a) với mọi \(x \ne 4\), tức là \({x^2} - 8x + 16 > 0\) với mọi \(x \ne 4\)

Suy ra bất phương trình có nghiệm duy nhất là x = 4

c) Tam thức \(h(x) = {x^2} - x + 6\) có \(\Delta  =  - 23 < 0\), hệ số a=1>0 nên h(x) luôn dương (cùng dấu với a) với mọi x, tức là \({x^2} - x + 6 > 0\) với mọi \(x \in \mathbb{R}\). Suy ra bất phương trình có vô số nghiệm.

Bích Lê
Xem chi tiết
Nguyễn Việt Lâm
16 tháng 4 2022 lúc 19:43

a.

\(3\sqrt{-x^2+x+6}\ge2\left(1-2x\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}-x^2+x+6\ge0\\1-2x< 0\end{matrix}\right.\\\left\{{}\begin{matrix}1-2x\ge0\\9\left(-x^2+x+6\right)\ge4\left(1-2x\right)^2\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}-2\le x\le3\\x>\dfrac{1}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x\le\dfrac{1}{2}\\25\left(x^2-x-2\right)\le0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{2}< x\le3\\\left\{{}\begin{matrix}x\le\dfrac{1}{2}\\-1\le x\le2\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow-1\le x\le3\)

Nguyễn Việt Lâm
16 tháng 4 2022 lúc 19:48

b.

ĐKXĐ: \(x\ge0\)

\(\Leftrightarrow\sqrt{2x^2+8x+5}-4\sqrt{x}+\sqrt{2x^2-4x+5}-2\sqrt{x}=0\)

\(\Leftrightarrow\dfrac{2x^2+8x+5-16x}{\sqrt{2x^2+8x+5}+4\sqrt{x}}+\dfrac{2x^2-4x+5-4x}{\sqrt{2x^2-4x+5}+2\sqrt{x}}=0\)

\(\Leftrightarrow\dfrac{2x^2-8x+5}{\sqrt{2x^2+8x+5}+4\sqrt{x}}+\dfrac{2x^2-8x+5}{\sqrt{2x^2-4x+5}+2\sqrt{x}}=0\)

\(\Leftrightarrow\left(2x^2-8x+5\right)\left(\dfrac{1}{\sqrt{2x^2+8x+5}+4\sqrt{x}}+\dfrac{1}{\sqrt{2x^2-4x+5}+2\sqrt{x}}\right)=0\)

\(\Leftrightarrow2x^2-8x+5=0\)

\(\Leftrightarrow x=\dfrac{4\pm\sqrt{6}}{2}\)

Nguyễn Việt Lâm
16 tháng 4 2022 lúc 19:52

Câu b còn 1 cách giải nữa:

Với \(x=0\) không phải nghiệm

Với \(x>0\) , chia 2 vế cho \(\sqrt{x}\) ta được:

\(\sqrt{2x+8+\dfrac{5}{x}}+\sqrt{2x-4+\dfrac{5}{x}}=6\)

Đặt \(\sqrt{2x-4+\dfrac{5}{x}}=t>0\Leftrightarrow2x+8+\dfrac{5}{x}=t^2+12\)

Phương trình trở thành:

\(\sqrt{t^2+12}+t=6\)

\(\Leftrightarrow\sqrt{t^2+12}=6-t\)

\(\Leftrightarrow\left\{{}\begin{matrix}6-t\ge0\\t^2+12=\left(6-t\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}t\le6\\12t=24\end{matrix}\right.\)

\(\Rightarrow t=2\)

\(\Rightarrow\sqrt{2x-4+\dfrac{5}{x}}=2\)

\(\Leftrightarrow2x-4+\dfrac{5}{x}=4\)

\(\Rightarrow2x^2-8x+5=0\)

\(\Leftrightarrow...\)

Hoàng By
Xem chi tiết
Trần Tuyết Như
18 tháng 3 2015 lúc 12:22

x = -15

1 đúng nhá

ran mori
18 tháng 3 2015 lúc 12:15

x = -15

1 đúng nhá