Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
biii
Xem chi tiết
Uyên Phạm
15 tháng 3 2021 lúc 21:06

undefined

Phạm Thị Mai Thi
Xem chi tiết
Nguyễn Huỳnh Minh Thư
Xem chi tiết
Hung Hung
24 tháng 9 2016 lúc 16:20

1, x=5 bình phương các vế lên rồi giải 

dinhvanhungg
Xem chi tiết
Nguyễn Văn Vũ
Xem chi tiết
Lầy Văn Lội
17 tháng 5 2017 lúc 23:05

đánh giá đi bạn 

Lầy Văn Lội
20 tháng 5 2017 lúc 0:03

\(\frac{6}{-x^2+10x-24}=\frac{6}{1-\left(x-5\right)^2}\ge6\)

Bích Lê
Xem chi tiết
Nguyễn Việt Lâm
16 tháng 4 2022 lúc 19:43

a.

\(3\sqrt{-x^2+x+6}\ge2\left(1-2x\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}-x^2+x+6\ge0\\1-2x< 0\end{matrix}\right.\\\left\{{}\begin{matrix}1-2x\ge0\\9\left(-x^2+x+6\right)\ge4\left(1-2x\right)^2\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}-2\le x\le3\\x>\dfrac{1}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x\le\dfrac{1}{2}\\25\left(x^2-x-2\right)\le0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{2}< x\le3\\\left\{{}\begin{matrix}x\le\dfrac{1}{2}\\-1\le x\le2\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow-1\le x\le3\)

Nguyễn Việt Lâm
16 tháng 4 2022 lúc 19:48

b.

ĐKXĐ: \(x\ge0\)

\(\Leftrightarrow\sqrt{2x^2+8x+5}-4\sqrt{x}+\sqrt{2x^2-4x+5}-2\sqrt{x}=0\)

\(\Leftrightarrow\dfrac{2x^2+8x+5-16x}{\sqrt{2x^2+8x+5}+4\sqrt{x}}+\dfrac{2x^2-4x+5-4x}{\sqrt{2x^2-4x+5}+2\sqrt{x}}=0\)

\(\Leftrightarrow\dfrac{2x^2-8x+5}{\sqrt{2x^2+8x+5}+4\sqrt{x}}+\dfrac{2x^2-8x+5}{\sqrt{2x^2-4x+5}+2\sqrt{x}}=0\)

\(\Leftrightarrow\left(2x^2-8x+5\right)\left(\dfrac{1}{\sqrt{2x^2+8x+5}+4\sqrt{x}}+\dfrac{1}{\sqrt{2x^2-4x+5}+2\sqrt{x}}\right)=0\)

\(\Leftrightarrow2x^2-8x+5=0\)

\(\Leftrightarrow x=\dfrac{4\pm\sqrt{6}}{2}\)

Nguyễn Việt Lâm
16 tháng 4 2022 lúc 19:52

Câu b còn 1 cách giải nữa:

Với \(x=0\) không phải nghiệm

Với \(x>0\) , chia 2 vế cho \(\sqrt{x}\) ta được:

\(\sqrt{2x+8+\dfrac{5}{x}}+\sqrt{2x-4+\dfrac{5}{x}}=6\)

Đặt \(\sqrt{2x-4+\dfrac{5}{x}}=t>0\Leftrightarrow2x+8+\dfrac{5}{x}=t^2+12\)

Phương trình trở thành:

\(\sqrt{t^2+12}+t=6\)

\(\Leftrightarrow\sqrt{t^2+12}=6-t\)

\(\Leftrightarrow\left\{{}\begin{matrix}6-t\ge0\\t^2+12=\left(6-t\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}t\le6\\12t=24\end{matrix}\right.\)

\(\Rightarrow t=2\)

\(\Rightarrow\sqrt{2x-4+\dfrac{5}{x}}=2\)

\(\Leftrightarrow2x-4+\dfrac{5}{x}=4\)

\(\Rightarrow2x^2-8x+5=0\)

\(\Leftrightarrow...\)

Công chúa giá lạnh
Xem chi tiết
Khánh Thy Phạm
Xem chi tiết
Hung nguyen
16 tháng 11 2017 lúc 13:35

Điều kiện: \(x\ge\dfrac{1}{2}\)

\(\sqrt{2x-2\sqrt{2x-1}}-2\sqrt{2x+3-4\sqrt{2x-1}}+3\sqrt{2x+8-6\sqrt{2x-1}=0}\)

\(\Leftrightarrow\sqrt{\left(\sqrt{2x-1}-1\right)^2}-2\sqrt{\left(\sqrt{2x-1}-2\right)^2}+3\sqrt{\left(\sqrt{2x-1}-3\right)^2}=0\)

\(\Leftrightarrow\left|\sqrt{2x-1}-1\right|-2\left|\sqrt{2x-1}-2\right|+3\left|\sqrt{2x-1}-3\right|=0\)

Với \(\dfrac{1}{2}\le x< 1\)

\(\Leftrightarrow1-\sqrt{2x-1}-2\left(2-\sqrt{2x-1}\right)+3\left(3-\sqrt{2x-1}\right)=0\)

\(\Leftrightarrow-2\sqrt{2x-1}+6=0\)

\(\Leftrightarrow x=5\left(l\right)\)

Tương tự cho các trường hợp: \(1\le x< \dfrac{5}{2};\dfrac{5}{2}\le x< 5;x\ge5\)

Tới đây thì kết luận thôi.

Lightning Farron
16 tháng 11 2017 lúc 12:22

\(\sqrt{2x-2\sqrt{2x-1}}-2\sqrt{2x+3-4\sqrt{2x-1}}+3\sqrt{2x+8-6\sqrt{2x-1}}=0\)

ĐK:\(x\ge\dfrac{1}{2}\)

\(\Leftrightarrow\sqrt{2x-1-2\sqrt{2x-1}+1}-2\sqrt{2x-1-4\sqrt{2x-1}+4}+3\sqrt{2x-1-6\sqrt{2x-1}+9}=0\)

\(\Leftrightarrow\sqrt{\left(\sqrt{2x-1}-1\right)^2}-2\sqrt{\left(\sqrt{2x-1}-2\right)^2}+3\sqrt{\left(\sqrt{2x-1}-3\right)^2}=0\)

\(\Leftrightarrow\sqrt{2x-1}-1-2\left(\sqrt{2x-1}-2\right)+3\left(\sqrt{2x-1}-3\right)=0\)

\(\Leftrightarrow\sqrt{2x-1}-1-2\sqrt{2x-1}+4+3\sqrt{2x-1}-9=0\)

\(\Leftrightarrow2\sqrt{2x-1}-6=0\)\(\Leftrightarrow\sqrt{2x-1}=3\)

\(\Leftrightarrow2x-1=9\Leftrightarrow2x=10\Rightarrow x=5\) *Thỏa*

Sakura Nguyen
Xem chi tiết
Võ Hồng Phúc
26 tháng 11 2019 lúc 20:45

a. ĐKXĐ: \(x\le\frac{-2-\sqrt{2}}{2};x\ge\frac{-2+\sqrt{2}}{2}\)

\(pt\Leftrightarrow2\sqrt{2x^2+4x+1}=2-2x^2-4x\)

\(\Leftrightarrow2x^2+4x+1+2\sqrt{2x^2+4x+1}+1=0\)

\(\Leftrightarrow\left(\sqrt{2x^2+4x+1}+1\right)^2=0\)

\(\Leftrightarrow\sqrt{2x^2+4x+1}+1=0\)

\(\Leftrightarrow\sqrt{2x^2+4x+1}=-1\)

\(\Rightarrow\text{pt vô nghiệm}\)

Khách vãng lai đã xóa
Võ Hồng Phúc
26 tháng 11 2019 lúc 20:45

b. ĐKXĐ: \(x\le-4;x\ge4\)

Đặt \(\sqrt{x+4}+\sqrt{x-4}=t\left(t>0\right)\)

\(\Leftrightarrow t^2=2x+2\sqrt{x^2-16}\)

pt đã cho tương đương:

\(t=t^2\)

\(\Leftrightarrow t=1\) \(\left(\text{Vì }t>0\right)\)

\(\Leftrightarrow\sqrt{x+4}+\sqrt{x-4}=1\)

\(\Leftrightarrow2x+2\sqrt{x^2-16}=1\)

\(\Leftrightarrow2\sqrt{x^2-16}=1-2x\)

\(\Leftrightarrow\left\{{}\begin{matrix}4\left(x^2-16\right)=\left(1-2x\right)^2\\1-2x\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{65}{4}\\x\le\frac{1}{2}\end{matrix}\right.\Rightarrow\text{vô nghiệm}\)

Khách vãng lai đã xóa