1)Tính nhanh:
a)63^2 - 47^2/215^2-105^2
b)427^2 - 363^2/537^2 - 463^2
Bài 1 Tính giá trị của biểu thức
63^2 − 47^2
215^2 − 105^2 ,437^2 − 363^2
537^2 − 463^2
\(63^2-47^2\)
= \(\left(63-47\right)\left(63+47\right)\)
= \(16.110\)
= \(1760\)
a) \(63^2-47^2=\left(63-47\right)\left(63+47\right)=16\cdot110=1760\)
b) \(215^2-105^2=\left(215-105\right)\left(215+105\right)=35200\)
c) \(437^2-363^2=59200\)
d) \(537^2-463^2=74000\)
tính giá trị biểu thức:
a) (63^2 - 47^2) / (215^2 - 105^2)
b) (437^2 - 363^2) / (537^2 - 463^2)
Tính giá trị biểu thức sau:
A = \(\frac{63^2-47^2}{215^2-105^2}\)
B = \(\frac{437^2-363^2}{537^2-463^2}\)
\(A=\frac{63^2-47^2}{215^2-105^2}=\frac{\left(63+47\right)\left(63-47\right)}{\left(215+105\right)\left(215-105\right)}=\frac{110\cdot16}{320\cdot110}=\frac{1}{20}\)
\(B=\frac{437^2-363^2}{537^2-463^2}=\frac{\left(473-363\right)\left(473+363\right)}{\left(573-463\right)\left(573+463\right)}=\frac{110\cdot836}{110\cdot1036}=\frac{836}{1036}=\frac{4\cdot209}{4\cdot234}=\frac{209}{234}\)
Trả lời:
\(A=\frac{63^2-47^2}{215^2-105^2}=\frac{\left(63-47\right).\left(63+47\right)}{\left(215-105\right).\left(215+105\right)}=\frac{16.110}{110.320}=\frac{1}{20}\)
\(B=\frac{437^2-363^2}{537^2-463^2}=\frac{\left(437-363\right).\left(437+363\right)}{\left(537-463\right).\left(537+463\right)}=\frac{74.800}{74.1000}=\frac{4}{5}\)
Học tốt
Áp dụng HĐT số 3 bạn nhé '-'
\(A=\frac{63^2-47^2}{215^2-105^2}=\frac{\left(63+47\right)\left(63-47\right)}{\left(215+105\right)\left(215-105\right)}=\frac{110\cdot16}{320\cdot110}=\frac{16}{320}=\frac{1}{20}\)
\(B=\frac{437^2-363^2}{537^2-463^2}=\frac{\left(437+363\right)\left(437-363\right)}{\left(537+463\right)\left(537-463\right)}=\frac{800\cdot74}{1000\cdot74}=\frac{800}{1000}=\frac{8}{10}=\frac{4}{5}\)
Tính giá trị của biểu thức:
a) \(\frac{63^2-47^2}{215^2-105^2}\)
b) \(\frac{437^2-363^2}{537^2-463^2}\)
\(a.\frac{63^2-47^2}{215^2-105^2}\)\(b.\frac{437-363^2}{532^2-463^2}\)
Rút gọn các biểu thức
A=\(\frac{63^2-47^2}{215^2-105^2}\) B=\(\frac{437^2-363^2}{537^2-463^2}\) C=(2+1)(2\(^2\)+1)(2\(^4\)+1)(2\(^8\)+1)(2\(^{16}\)+1)
A=\(\frac{63^2-47^2}{215^2-105^2}\)
A=\(\frac{\left(63-47\right).\left(63+47\right)}{\left(215-105\right).\left(215+105\right)}\)
A=\(\frac{16.110}{110.320}\)
A=\(\frac{1760}{35200}\)
\(A=\frac{1}{20}\)
B=\(\frac{437^2-363^2}{537^2-463^2}\)
B=\(\frac{\left(437-363\right).\left(437+363\right)}{\left(537-463\right).\left(537+463\right)}\)
B=\(\frac{74.800}{74.1000}\)
B=\(\frac{4}{5}\)
1. Tính giá trị của các biểu thức:
a, \(\dfrac{63^2-47^2}{215^2-105^2}\)
b, \(\dfrac{437^2-363^2}{537^2-463^2}\)
2. So sánh: A=262-242 và B= 272-252
a) \(\dfrac{63^2-47^2}{215^2-105^2}\)
= \(\dfrac{\left(63-47\right)\left(63+47\right)}{\left(215-105\right)\left(215+105\right)}\)
= \(\dfrac{16.110}{110.320}=\dfrac{16}{320}=\dfrac{1}{20}\)
b) \(\dfrac{437^2-363^2}{537^2-463^2}\)
= \(\dfrac{\left(437-363\right)\left(437+363\right)}{\left(537-463\right)\left(537+463\right)}\)
= \(\dfrac{74.800}{74.1000}=\dfrac{800}{1000}=\dfrac{4}{5}\)
2)
A = \(26^2-24^2=\left(26-24\right)\left(26+24\right)=2.50=100\)
B = \(27^2-25^2=\left(27-25\right)\left(27+25\right)=2.52=104\)
Từ đó suy ra A < B
1.
\(a.\: \dfrac{63^2-47^2}{215^2-105^2}=\dfrac{\left(63-47\right)\left(63+47\right)}{\left(215-105\right)\left(215+105\right)}\\ =\dfrac{16.110}{110.320}=\dfrac{16}{320}=\dfrac{1}{20}\)
\(b.\dfrac{437^2-363^2}{537^2-463^2}=\dfrac{\left(437-363\right)\left(437+363\right)}{\left(537-463\right)\left(537+463\right)}\\ =\dfrac{74.800}{74.1000}=\dfrac{800}{1000}=\dfrac{4}{5}\)
2.
\(A=26^2-24^2=\left(26-24\right)\left(26+24\right)=2.50=100\)
\(B=27^2-25^2=\left(27-25\right)\left(27+25\right)=2.52=104\)
\(vì\:100< 104\:nên\:26^2-24^2< 27^2-25^2\\ hay\:A< B\)
Bài 1: So sánh
A= 26^2 - 24^2 và B= 27^2 - 25^2
Bài 2: Tìm x
4(x + 1)^2 + (2x - 1)^2 - 8(x - 1)(x + 1) = 11
Bài 3: Rút gọn
a, 2x(2x - 1)^2 - 3x(x +3)(x - 3) - 4x(x + 1)^2
b, (3x + 1)^2 - 2(3x + 1)(3x + 5) + (3x + 5)
c, (a - b + c)^2 - (b - c)^2 + 2a - 2ac
Bài 4: Tính nhanh
a, 63^2 - 47^2 phần 215^2 - 105^2
b, 437^2 - 363^2 phần 537^2 - 463^2
Bài 1 :
\(A=26^2-24^2=\left(26-24\right)\left(26+24\right)=2.50=100\)
\(B=27^2-25^2=\left(27-25\right)\left(27+25\right)=2.52=104\)
Vì \(100< 104\Rightarrow A< B\)
Bài 2 :
\(4\left(x+1\right)^2+\left(2x-1\right)^2-8\left(x-1\right)\left(x+1\right)=11\)
\(\Rightarrow4\left(x^2+2x+1\right)+4x^2-4x+1-8\left(x^2-1\right)=11\)
\(\Rightarrow4x^2+8x+4+4x^2-4x+1-8x^2+8=11\)
\(\Rightarrow4x=-2\)\(\Leftrightarrow x=-\frac{1}{2}\)
Tính:
a) 632 - 472/ 2152 - 1052
b) 4372 - 3632/ 5372 - 4632
c) 232 - (2 + 1). (22 + 1). (24 + 1). (28 + 1). (216 + 1)
d) 1002 + 1032 + 1052 + 942 - 1012 - 982 - 962 - 1072
\(a,\frac{63^2-47^2}{215^2-105^2}=\frac{\left(63-47\right)\left(63+47\right)}{\left(215-105\right)\left(215+105\right)}=\frac{16.110}{110.320}=\frac{1}{20}\)
\(b,\frac{437^2-363^2}{537^2-463^2}=\frac{\left(437-363\right)\left(437+363\right)}{\left(537-463\right)\left(537+463\right)}=\frac{74.800}{74.1000}=0,8\)
\(c,2^{32}-\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=2^{32}-\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=2^{32}-\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=2^{32}-\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=2^{32}-\left(2^{16}-1\right)\left(2^{16}+1\right)\)
\(=2^{32}-2^{32}+1=1\)
\(d,100^2+103^2+105^2+94^2-101^2-98^2-96^2-107^2\)
\(=\left(100^2-98^2\right)+\left(103^2-101^2\right)-\left(107^2-105^2\right)-\left(96^2-94^2\right)\)
\(=\left(100-98\right)\left(100+98\right)+\left(103-101\right)\left(103+101\right)-\left(107-105\right)\left(107+105\right)-\left(96-94\right)\left(96+94\right)\)
\(=2.198+2.204-2.212-2.190\)
\(=2\left(198+204-212-190\right)=2.0=0\)