Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Thu Hiền
Xem chi tiết
Thái Huỳnh
Xem chi tiết
Lightning Farron
21 tháng 6 2017 lúc 22:01

a) \(\sqrt{2-x^2+2x}+\sqrt{-x^2-6x-8}=1+\sqrt{3}\)

\(pt\Leftrightarrow\sqrt{-x^2+2x+1+1}+\sqrt{-x^2-6x-9+1}=1+\sqrt{3}\)

\(\Leftrightarrow\sqrt{-\left(x-1\right)^2+1}+\sqrt{-\left(x+3\right)^2+1}=1+\sqrt{3}\)

Dễ thấy: \(VT\le2< 1+\sqrt{3}=VP\) (vô nghiệm)

b)\(\sqrt{9x^2-6x+2}+\sqrt{45x^2-30x+9}=\sqrt{6x-9x^2+8}\)

\(pt\Leftrightarrow\sqrt{9x^2-6x+1+1}+\sqrt{45x^2-30x+5+4}=\sqrt{-9x^2+6x-1+9}\)

\(\Leftrightarrow\sqrt{\left(3x-1\right)^2+1}+\sqrt{5\left(3x-1\right)^2+4}=\sqrt{-\left(3x-1\right)^2+9}\)

Dễ thấy: \(VT\ge1+\sqrt{4}=3=VP\)

Đẳng thức xảy ra khi \(x=\dfrac{1}{3}\)

Lê Thu Hiền
Xem chi tiết
Nguyễn Việt Lâm
22 tháng 7 2021 lúc 16:06

a.

ĐKXĐ: \(x\ge-\dfrac{5}{3}\)

\(9x^2-3x-\left(3x+5\right)-\sqrt{3x+5}=0\)

Đặt \(\sqrt{3x+5}=t\ge0\)

\(\Rightarrow9x^2-3x-t^2-t=0\)

\(\Delta=9+36\left(t^2+t\right)=\left(6t+3\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{3+6t+3}{18}=\dfrac{t+1}{3}\\x=\dfrac{3-6t-3}{18}=-\dfrac{t}{3}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}t=3x-1\\t=-3x\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{3x+5}=3x-1\left(x\ge\dfrac{1}{3}\right)\\\sqrt{3x+5}=-3x\left(x\le0\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}3x+5=9x^2-6x+1\left(x\ge\dfrac{1}{3}\right)\\3x+5=9x^2\left(x\le0\right)\end{matrix}\right.\)

\(\Leftrightarrow...\)

Nguyễn Việt Lâm
22 tháng 7 2021 lúc 16:18

c.

ĐKXĐ: \(x\ge-5\)

\(x^2-3x+2-x-5-\sqrt{x+5}=0\)

Đặt \(\sqrt{x+5}=t\ge0\)

\(\Rightarrow-t^2-t+x^2-3x+2=0\)

\(\Delta=1+4\left(x^2-3x+2\right)=\left(2x-3\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}t=\dfrac{1+2x-3}{-2}=1-x\\t=\dfrac{1-2x+3}{-2}=x-2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+5}=1-x\left(x\le1\right)\\\sqrt{x+5}=x-2\left(x\ge2\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x+5=x^2-2x+1\left(x\le1\right)\\x+5=x^2-4x+4\left(x\ge2\right)\end{matrix}\right.\)

\(\Leftrightarrow...\)

Nguyễn Việt Lâm
22 tháng 7 2021 lúc 16:13

b.

ĐKXĐ: \(x\ge-\dfrac{8}{3}\)

\(\left(3x+2\right)^2-6-\sqrt{3x+8}=0\)

Đặt \(\sqrt{3x+8}=t\ge0\Rightarrow3x+2=t^2-6\)

\(\left(t^2-6\right)^2-6-t=0\)

\(\Leftrightarrow t^4-12t^2-t+30=0\)

\(\Leftrightarrow\left(t^2+t-5\right)\left(t^2-t-6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=3\\t=\dfrac{\sqrt{21}-1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{3x+8}=3\\\sqrt{3x+8}=\dfrac{\sqrt{21}-1}{2}\end{matrix}\right.\)

\(\Leftrightarrow...\)

Hoàng Ngọc Tuyết Nhung
Xem chi tiết
Quang Vinh Lưu
Xem chi tiết
Pham Hoàng Lâm
Xem chi tiết
Ngọc Vĩ
Xem chi tiết
Lightning Farron
19 tháng 6 2016 lúc 21:40

pt quá vĩ đại =.= cx trên OLM lun 

Lightning Farron
19 tháng 6 2016 lúc 22:12

câu a biến đổi to lắm

Lightning Farron
19 tháng 6 2016 lúc 22:14

\(\Leftrightarrow-\left(12x\sqrt{6x-1}-2\sqrt{6x-1}-2x^3-9x^2+6x-8\right)=0\)rồi sao nx 

cái này ra nghiệm là 

\(2-\sqrt{2}\)\(\sqrt{2}+2\)

Đạm Đoàn
Xem chi tiết
Hoàng Anh Tú
Xem chi tiết