\(\Leftrightarrow-\left(12x\sqrt{6x-1}-2\sqrt{6x-1}-2x^3-9x^2+6x-8\right)=0\)rồi sao nx
cái này ra nghiệm là
\(2-\sqrt{2}\)và\(\sqrt{2}+2\)
\(\Leftrightarrow-\left(12x\sqrt{6x-1}-2\sqrt{6x-1}-2x^3-9x^2+6x-8\right)=0\)rồi sao nx
cái này ra nghiệm là
\(2-\sqrt{2}\)và\(\sqrt{2}+2\)
\(\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-5}+2=0\)
\(2x-x^2+\sqrt{6x^2-12x+7}=0\)
\(\left(x+1\right)\left(x+4\right)-3\sqrt{x^2+5x+2}=6\)
\(\frac{1}{2}\sqrt{x-1}-\frac{3}{2}\sqrt{9x-9}+24\sqrt{\frac{x-1}{64}}=-17\)
giúp dùm đi mấy pạn
Bài 3 giải phương trình :
a ) \(3\sqrt{4x+4}-\sqrt{9x+9}-8\sqrt{\frac{x+1}{16}}=5\)
b ) \(\sqrt{x^2-4x+4}=2\)
c ) \(\sqrt{x^2-6x+9}=x-2\)
d ) \(\sqrt{x^2+4}=\sqrt{2x+3}\)
e ) \(\frac{\sqrt{2x-3}}{\sqrt{x-1}}=2\)
f ) \(x+\sqrt{2x+15}=0\)
Rút gon
A = \(\left(\sqrt{6x^2-12xy^2+6y^3}+\sqrt{24x^2y}\right):\sqrt{6y}\)
B = \(\frac{\sqrt{343xy^3\left(x-y\right)^2}}{\sqrt{28xy}}\) với x, y>0 , x<y
C= \(\sqrt{\frac{m}{1-2x+x^2}}:\frac{\sqrt{81}}{4m^3\left(x^2-2x+1\right)}\) với m>0 , m khác 1
Giải phương trình
a, \(\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}+2=0\)
b, \(\sqrt{9x^2+18}+2\sqrt{x^2+2}-\sqrt{25x^2+50}+3=0\)
c, \(\frac{9x-7}{\sqrt{7x+5}}=\sqrt{7x+5}\)
d, \(\frac{\sqrt{2x-3}}{\sqrt{x-1}}=2\)
Với x là nghiệm của pt: 2(x-1)=\(\sqrt{2\left(x^2+x+1\right)}\) . Hãy tính: T= \(\frac{-2x^3+13x^2-19x+1}{2x^4-9x^3-6x^2+17x-2}\)
Giải phương trình
a) \(\sqrt{x^2-9}+\sqrt{x^2-6x+9}=0\)
b) \(\sqrt{x^2-4}-x^2+4=0\)
c) \(\sqrt{x^2-4x+5}+\sqrt{x^2-4x+8}+\sqrt{x^2-4x+9}=3+\sqrt{5}\)
d) \(\sqrt{9x^2-6x+2}+\sqrt{45x^2-30x+9}=\sqrt{6x-9x^2+8}\)
1) Giải phương trình
a) \(\sqrt{2}.x-\sqrt{98}=0\)
b ) \(\sqrt{2x}=\sqrt{8}\)
c) \(\sqrt{5}.x^2=\sqrt{20}\)
d) \(2x^2-\sqrt{100}=0\)
2) Tính
a) \(\sqrt{\frac{4}{\left(2-\sqrt{3}\right)^2}}+\sqrt{\frac{9}{\left(2+\sqrt{3}\right)^2}}\)
Rút gọn
a, x+3+\(\sqrt{^2x-6x+9}\)
b, \(\sqrt{^2x+4x+4}-\sqrt{^2x}\) ( -2 <x<0)
c, \(\sqrt{\frac{^2x-2x+1}{x-1}}\) (x>1)
Mình rút gọn như thế này đúng không nhỉ?
\(P=\left(2-\frac{\sqrt{x}-1}{2\sqrt{x}-3}\right):\left(\frac{6\sqrt{x}+1}{2x-\sqrt{x}-3}+\frac{\sqrt{x}}{\sqrt{x}+1}\right)\)
\(P=\left[\frac{2\left(2\sqrt{x}-3\right)}{2\sqrt{x}-3}-\frac{\sqrt{x}-1}{2\sqrt{x}-3}\right]:\left[\frac{6\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(2\sqrt{x}-3\right)}+\frac{\sqrt{x}\left(2\sqrt{x}-3\right)}{\left(\sqrt{x}+1\right)\left(2\sqrt{x}-3\right)}\right]\)
\(P=\left(\frac{4\sqrt{x}-6}{2\sqrt{x}-3}-\frac{\sqrt{x}-1}{2\sqrt{x}-3}\right):\left(\frac{6\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(2\sqrt{x}-3\right)}+\frac{2x-3\sqrt{x}}{\left(\sqrt{x}+1\right)\left(2\sqrt{x}-3\right)}\right)\)
\(P=\left(\frac{4\sqrt{x}-6-\sqrt{x}+1}{2\sqrt{x}-3}\right):\left(\frac{6\sqrt{x}+1+2x-3\sqrt{x}}{\left(\sqrt{x}+1\right)\left(2\sqrt{x}-3\right)}\right)\)
\(P=\frac{3\sqrt{x}-5}{2\sqrt{x}-3}:\frac{2x+3\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(2\sqrt{x}-3\right)}\)
\(P=\frac{3\sqrt{x}-5}{2\sqrt{x}-3}.\frac{\left(\sqrt{x}+1\right)\left(2\sqrt{x}-3\right)}{2x+3\sqrt{x}+1}\)
\(P=\left(3\sqrt{x}-5\right).\frac{\left(\sqrt{x}+1\right)}{2x+3\sqrt{x}+1}\)
\(P=\frac{3x+3\sqrt{x}-5\sqrt{x}-5}{2x+3\sqrt{x}+1}\)
\(P=\frac{3x-5\sqrt{x}-5}{2x+1}\)