Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
linh
Xem chi tiết
Thu Thao
30 tháng 9 2020 lúc 16:39

hơi ngán dạng này :((((

a, \(x^2-3x+5=x^2-2.\frac{3}{2}x+\frac{9}{4}-\frac{9}{4}+5=\left(x-\frac{3}{2}\right)^2+\frac{11}{4}\ge\frac{11}{4}>0\forall x\)

b,

\(x^2-\frac{1}{3}x+\frac{5}{4}=x^2-2.\frac{1}{6}+\frac{1}{36}-\frac{1}{36}+\frac{5}{4}=\left(x-\frac{1}{6}\right)^2+\frac{11}{9}>0\forall x\)

c,

\(x-x^2-3=-\left(x^2-2.\frac{1}{2}x+\frac{1}{4}\right)+\frac{1}{4}-3=-\left(x-\frac{1}{2}\right)^2-\frac{11}{4}< 0\forall x\)d,

\(x-2x^2-\frac{5}{2}=-2\left(x^2-\frac{1}{2}x+\frac{5}{4}\right)=-2\left(x^2-2.\frac{1}{4}+\frac{1}{16}-\frac{1}{16}+\frac{5}{4}\right)=-2\left[\left(x-\frac{1}{4}\right)^2+\frac{19}{16}\right]=-2\left(x-\frac{1}{4}\right)^2-\frac{19}{8}< 0\forall x\)P/s : ko chắc lém :)))

Khách vãng lai đã xóa
Duy Nguyễn Hoàng
Xem chi tiết
Đặng Quỳnh Ngân
30 tháng 7 2016 lúc 21:16

a) = 3( x2 + 2x/6 + 1/9) + 6 -1/3 =3(x+ 1/3)+ 17/3 >0 (dpcm)

Vũ Thị Như Quỳnh
8 tháng 10 2016 lúc 19:02

dễ mà bn

dễ quá hihi

nhưng mà mình

ko ghi được

Nguyễn Đức Anh
Xem chi tiết
Đinh Đức Hùng
13 tháng 7 2017 lúc 17:55

a ) \(4x^2+2x+1=\left(2x\right)^2+2\cdot2x\cdot\frac{1}{2}+\frac{1}{4}+\frac{3}{4}=\left(2x+\frac{1}{2}\right)^2+\frac{3}{4}>0\forall x\)

b ) \(x^2+3x+4=\left(x^2+2\cdot\frac{3}{2}\cdot x+\frac{9}{4}\right)+\frac{7}{4}=\left(x+\frac{3}{2}\right)^2+\frac{7}{4}>0\forall x\)

c ) \(9x^2+3x+5=\left(3x\right)^2+2\cdot3x\cdot\frac{1}{2}+\frac{1}{4}+\frac{19}{4}=\left(3x+\frac{1}{2}\right)^2+\frac{19}{4}>0\forall x\)

»βέ•Ҫɦαηɦ«
13 tháng 7 2017 lúc 18:53

Ta có : 4x2 + 2x + 1

= (2x)2 + 2.2x.\(\frac{1}{2}\)\(\frac{1}{2}+\frac{3}{4}\)

= (2x + \(\frac{1}{2}\))2 + \(\frac{3}{4}\)

Mà : (2x + \(\frac{1}{2}\))\(\ge0\forall x\)

=> (2x + \(\frac{1}{2}\))2 + \(\frac{3}{4}\) \(\ge\frac{3}{4}\forall x\)

Hay : (2x + \(\frac{1}{2}\))2 + \(\frac{3}{4}\)  \(>0\forall x\)

Vậy 4x2 + 2x + 1 \(>0\forall x\)

Demngayxaem
Xem chi tiết
Tiểu Ma Bạc Hà
10 tháng 6 2017 lúc 19:47

a , Ta có \(x^2+x+1=x^2+2x\frac{1}{2}+\left(\frac{1}{2}\right)^2+\)\(\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\) \(\ge\frac{3}{4}>0\left(đpcm\right)\)

b , Ta có : \(4x^2-2x+3\)\(\left(2x\right)^2-2.2x.1+1^2+2\) = \(\left(2x-1\right)^2+2\ge2>0\left(đpcm\right)\)

c , Ta có \(3x^2+2x+1=x^2-\frac{2x}{3}+\frac{1}{9}+2x^2+\frac{8x}{3}+\frac{8}{9}\)

\(\left(x-\frac{1}{3}\right)^2+2\left(x^2+\frac{4x}{3}+\frac{4}{9}\right)=\left(x-\frac{1}{3}\right)^2+2\left(x+\frac{2}{3}\right)^2\ge0\)

Vì Dấu "=" không thể xảy ra , do đó \(3x^2+2x+1>0\left(đpcm\right)\)

Demngayxaem
10 tháng 6 2017 lúc 19:42

a,-x2+x+1>0 với mọi x mới đúng

nguyễn thị minh châu
10 tháng 6 2017 lúc 19:46

anh gioi qua

Tiểu Thư Kiêu Kì
Xem chi tiết
 Mashiro Shiina
16 tháng 10 2017 lúc 19:46

\(a=3x^2+2x+4=3\left(x^2+\dfrac{2}{3}x+\dfrac{4}{3}\right)\)

\(a=3\left(x^2+\dfrac{2}{3}x+\dfrac{1}{9}+\dfrac{11}{9}\right)\)

\(a=3\left(x^2+\dfrac{2}{3}x+\dfrac{1}{9}\right)+\dfrac{11}{3}\)

\(a=3\left(x+\dfrac{1}{3}\right)^2+\dfrac{11}{3}>0\left(đpcm\right)\)

Nguyễn Thị Thu
25 tháng 6 2019 lúc 10:31

làm ơn giúp mình bài toán hình phần d với cảm ơn nhiều( hình lớp 7 đó)eoeo

ỉn2k8>.
Xem chi tiết
Aurora
30 tháng 6 2021 lúc 9:02

Bài 1

\(A=x^2-6x+15=x^2-2.3.x+9+6=\left(x-3\right)^2+6>0\forall x\)

\(B=4x^2+4x+7=\left(2x\right)^2+2.2.x+1+6=\left(2x+1\right)^2+6>0\forall x\)

Bài 2

\(A=-9x^2+6x-2021=-\left(9x^2-6x+2021\right)=-\left[\left(3x-1\right)^2+2020\right]=-\left(3x-1\right)^2-2020< 0\forall x\)

 

Tuyết Như Bùi Thân
Xem chi tiết

Bài 1:

\(a,A=2x^2+2x+1=\left(x^2+2x+1\right)+x^2=\left(x+1\right)^2+x^2\\ Mà:\left(x+1\right)^2\ge0\forall x\in R\\ \Rightarrow\left(x+1\right)^2+x^2>0\forall x\in R\\ Vậy:A>0\forall x\in R\)

Nguyễn Lê Phước Thịnh
22 tháng 7 2023 lúc 10:21

2:

a: =-(x^2-3x+1)

=-(x^2-3x+9/4-5/4)

=-(x-3/2)^2+5/4 chưa chắc <0 đâu bạn

b: =-2(x^2+3/2x+3/2)

=-2(x^2+2*x*3/4+9/16+15/16)

=-2(x+3/4)^2-15/8<0 với mọi x

Bài 1:

\(B=4+x^2+x=\left(x^2+x+\dfrac{1}{4}\right)+\dfrac{15}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{15}{4}\ge\dfrac{15}{4}\forall x\in R\\ Vậy:B>0\forall x\in R\)

Kook Jung
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 5 2022 lúc 20:34

Bài 2: 

a: \(A=x^2+8x\)

\(=x^2+8x+16-16\)

\(=\left(x+4\right)^2-16\ge-16\)

Dấu '=' xảy ra khi x=-4

b: \(B=-2x^2+8x-15\)

\(=-2\left(x^2-4x+\dfrac{15}{2}\right)\)

\(=-2\left(x^2-4x+4+\dfrac{7}{2}\right)\)

\(=-2\left(x-2\right)^2-7\le-7\)

Dấu '=' xảy ra khi x=2

c: \(C=x^2-4x+7\)

\(=x^2-4x+4+3\)

\(=\left(x-2\right)^2+3\ge3\)

Dấu '=' xảy ra khi x=2

e: \(E=x^2-6x+y^2-2y+12\)

\(=x^2-6x+9+y^2-2y+1+2\)

\(=\left(x-3\right)^2+\left(y-1\right)^2+2\ge2\)

Dấu '=' xảy ra khi x=3 và y=1

Dương Sảng
Xem chi tiết