Cho đa thức \(P\left(x\right)=\left(3m-2n-1\right)x+2m+n-10=0\)(với mọi x), tìm m + 2n =...
Cho đa thức \(f\left(x\right)=\left(5m+2n-1\right)x+2m-5n+15\)
Tính m và n khi \(f\left(x\right)=0\)
1. Cho \(f\left(x\right)=x^{2n}-x^{2n-1}+x^{2n-2}-...+x^2-x+1\)
\(g\left(x\right)=1-x+x^2-...+x^{2n-2}-x^{2n-1}+x^{2n}\)
Tính giá trị của đa thức h(x) tại x=2012, biết \(h\left(x\right)=\left(f\left(x\right)+g\left(x\right)\right).\left(g\left(x\right)-f\left(x\right)\right)\)
2. Xác định các đa thức sau:
a) Nhị thức bậc nhất f(x) = ax + b với \(a\ne0\), biết f(-1) = 1 và f(1) = -1
b) Tam thức bậc hai \(g\left(x\right)=ax^2+bx+c\) với \(a\ne0\), biết g(-2) = 9, g(-1) = 2, g(1)=6
3. a) Đa thức f(x) = ax + b \(\left(a\ne0\right)\). Biết f(0) = 0. Chứng minh f(x) = -f(-x) với mọi x
b) Đa thức f(x) = ax2 + bx + c \(\left(a\ne0\right)\). Biết f(1) = f(-1). Chứng minh f(x) = f(-x) với mọi x.
Cho biết: một đa thức bằng đa thức 0 khi và chỉ khi tất cả các hệ số của nó bằng 0. Hãy tìm các giá trị của m và n để đa thức sau ( với biến số x) bằng đa thức 0:
\(P\left(x\right)=\left(3m-5n+1\right)x+\left(4m-n-10\right)\)
Để P(x) bằng đa thức 0 thì <=> \(\hept{\begin{cases}3m-5n+1=0\\4m-n-10=0\end{cases}}\)
(rồi giải bình thường thôi)
Để P(x) bằng đa thức 0 thì \(\hept{\begin{cases}3m-5n+1=0\\4m-n-10=0\end{cases}}\)
<=>\(\hept{\begin{cases}3m-5n=-1\\20m-5n=50\end{cases}}\)<=> \(\hept{\begin{cases}-17m=-51\\3m-5n=-1\end{cases}}\)
<=> \(\hept{\begin{cases}m=3\\9-5n=-1\end{cases}}\) <=> \(\hept{\begin{cases}m=3\\-5n=-10\end{cases}}\)
<=> \(\hept{\begin{cases}m=3\\n=2\end{cases}}\)
Vậy m=3, n=2 thì đa thức P(x) bằng đa thức 0
Làm tính nhân: a. \(\left(3x^{2m-1}-\dfrac{3}{7}y^{3n-5}+x^{2m}y^{3m}-3y^2\right)8x^{3-2m}y^{6-3n}\)
b.\(\left(2x^{2n}+3x^{2n-1}\right)\left(x^{1-2n}-3x^{2-2n}\right)\)
a: \(=24x^{2m-1+3-2m}y^{6-3m}-\dfrac{24}{7}y^{3n-7+6-3n}\cdot x^{3-2m}+8x^{3-2m+2m}\cdot y^{6-3n+3m}-24x^{3-2m}y^{6-2n+2}\)
\(=24x^2y^{6-3m}-\dfrac{24}{7}x^{3-2m}\cdot y^{-1}+8x^3y^{-3n+3m+6}-24x^{3-2m}y^{-2n+8}\)
b: \(=2x^{2n+1-2n}-6x^{2n+2-2n}+3x^{2n-1+1-2n}-9x^{2n-1+2-2n}\)
\(=2x-6x^2+3-9x\)
\(=-6x^2-7x+3\)
cmr: vs mọi sô tự nhiên n
\(\left(x+1\right)^{2n}-x^{2n}-2x-1⋮x\left(x+1\right)\left(2x+1\right)\)
cm = cách mọi nghiệm của đa thức chia đều là nghiệm của đa thức bị chia
cho pt \(x^2-\left(2m+n\right)x-1=0\) và \(x^2-5x+3m+2n=0\). tìm m,n để 2 phương trình có nghiệm chung
Biểu thức \(\left(2m-3\right)\left(3n-2\right)-\left(3m-2\right)\left(2n-3\right)\)
luôn chia hết cho\(5\)với mọi số nguyên m,n
Biểu thức đó bằng 5m - 5n nên chia hết cho 5 với mọi m,n nguyên
cho đa thức
\(f\left(x\right)=x\left(x-1\right)\left(x+2\right)\left(ax+b\right)\)
a,xác định a,b để \(f\left(x\right)-f\left(x-1\right)=x\left(x+1\right)\left(2x+1\right)\)với mọi x
b, tính tổng \(S=1.2.3+2.3.5+.....+n\left(n+1\right)\left(2n+2\right)\)theo n(với n nguyên dương)
Bài 10. Tìm m, n để đa thức \(f_{\left(x\right)}=\left(2m-n+1\right)x^2+m-3n+2\) là một đa thức không ?
- Để đa thức f(x) trên là một đa thức không thì :
\(\left\{{}\begin{matrix}2m-n+1=0\\m-3n+2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2m-n=-1\\m-3n=-2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}m=-\dfrac{1}{5}\\n=\dfrac{3}{5}\end{matrix}\right.\)
Vậy ...