Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Thu Hiền
Xem chi tiết
Hiếu Thông Minh
Xem chi tiết
trần gia bảo
17 tháng 5 2019 lúc 21:39

\(ĐK:x\le\frac{5-\sqrt{7}}{6},\frac{5+\sqrt{7}}{6}\le x\)

Ta có: \(8x^4+2=36x^4+9+100x^2+36x^2-60x-120x^3\)

    <=> \(28x^4-120x^3+136x^2-60x+7=0\)

    <=> \(\left(2x^2-6x+1\right)\left(14x^2-18x+7\right)=0\)

    <=> \(\orbr{\begin{cases}2x^2-6x+1=0\\14x^2-18x+7=0\end{cases}}\)

    \(TH_1:2x^2-6x+1=0\)

       <=> \(\orbr{\begin{cases}x=\frac{3+\sqrt{7}}{2}\left(n\right)\\x=\frac{3-\sqrt{7}}{2}\left(n\right)\end{cases}}\)

    \(TH_2:14x^2-18x+7=0\)

       <=> \(x\in\Phi\)( Tự c/m)

               Vậy \(S=\left\{\frac{3\pm\sqrt{7}}{2}\right\}\)

Kinder
Xem chi tiết
Nguyễn Thị Cầu Nguyễn
3 tháng 9 2023 lúc 9:42

Để giải các phương trình này, chúng ta sẽ làm từng bước như sau: 1. 13x(7-x) = 26: Mở ngoặc và rút gọn: 91x - 13x^2 = 26 Chuyển về dạng bậc hai: 13x^2 - 91x + 26 = 0 Giải phương trình bậc hai này để tìm giá trị của x. 2. (4x-18)/3 = 2: Nhân cả hai vế của phương trình với 3 để loại bỏ mẫu số: 4x - 18 = 6 Cộng thêm 18 vào cả hai vế: 4x = 24 Chia cả hai vế cho 4: x = 6 3. 2xx + 98x2022 = 98x2023: Rút gọn các thành phần: 2x^2 + 98x^2022 = 98x^2023 Chia cả hai vế cho 2x^2022: x + 49 = 49x Chuyển các thành phần chứa x về cùng một vế: 49x - x = 49 Rút gọn: 48x = 49 Chia cả hai vế cho 48: x = 49/48 4. (x+1) + (x+3) + (x+5) + ... + (x+101): Đây là một dãy số hình học có công sai d = 2 (do mỗi số tiếp theo cách nhau 2 đơn vị). Số phần tử trong dãy là n = 101/2 + 1 = 51. Áp dụng công thức tổng của dãy số hình học: S = (n/2)(a + l), trong đó a là số đầu tiên, l là số cuối cùng. S = (51/2)(x + (x + 2(51-1))) = (51/2)(x + (x + 100)) = (51/2)(2x + 100) = 51(x + 50) Vậy, kết quả của các phương trình là: 1. x = giá trị tìm được từ phương trình bậc hai. 2. x = 6 3. x = 49/48 4. S = 51(x + 50)

Nguyễn Thị Cầu Nguyễn
3 tháng 9 2023 lúc 9:43

nhầm

 

Bưu Ca
Xem chi tiết
Bùi Anh Tuấn
27 tháng 10 2019 lúc 8:23

Đặt \(t=6x+1\)và \(h=\sqrt{x^2+3}\)

\(\frac{1}{4}\cdot t^2+h^2-\frac{9}{4}=th\)

\(\Leftrightarrow\left(t-2h\right)^2=9\)

\(\Leftrightarrow t-2h=\pm3\)

Với \(t-2h=3\)ta có

\(6x+1-2\sqrt{x^2+3}=3\)

\(\Leftrightarrow3x-1=\sqrt{x^2+3}\)

\(\Leftrightarrow\hept{\begin{cases}3x-1\ge0\\x^2+3=\left(3x+2\right)^2\end{cases}\Leftrightarrow x=\frac{\sqrt{7}-3}{4}}\)

Vậy pt có nghiệm là \(x=1;x=\frac{\sqrt{7}-3}{4}\)

Khách vãng lai đã xóa
Hoàng Thu Phương
Xem chi tiết
yyyyyyyyyyyyyyyyy
4 tháng 12 2019 lúc 20:32

a) ĐKXĐ: x\(\ge\)-3

PT\(\Leftrightarrow\sqrt{\left(x+7\right)\left(x+3\right)}=3\sqrt{x+3}+2\sqrt{x+7}-6\)

Đặt \(\left(\sqrt{x+3},\sqrt{x+7}\right)=\left(a,b\right)\)                 \(\left(a,b\ge0\right)\)

PT\(\Leftrightarrow ab=3a+2b-6\Leftrightarrow a\left(b-3\right)-2\left(b-3\right)=0\)

\(\Leftrightarrow\left(a-2\right)\left(b-3\right)=0\Leftrightarrow\orbr{\begin{cases}a=2\\b=3\end{cases}}\)(TM ĐK)

TH 1: a=2\(\Leftrightarrow\sqrt{x+3}=2\Leftrightarrow x+3=4\Leftrightarrow x=1\)(tm)

TH 2: b=3\(\Leftrightarrow\sqrt{x+7}=3\Leftrightarrow x+7=9\Leftrightarrow x=2\)(tm)

Vậy tập nghiệm phương trình S={1; 2}

Khách vãng lai đã xóa
Mai Thị Thúy
Xem chi tiết
oooloo
Xem chi tiết
Nguyễn Việt Lâm
29 tháng 10 2020 lúc 18:07

Đặt \(\left\{{}\begin{matrix}2x+3=a\\\sqrt{x^2-x+1}=b>0\end{matrix}\right.\)

Pt trở thành:

\(a^2+2b^2-3ab=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=b\\a=2b\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2-x+1}=2x+3\\2\sqrt{x^2-x+1}=2x+3\end{matrix}\right.\)

\(\Leftrightarrow...\)

Kim Taehyung
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 11 2022 lúc 14:34

a: =>(x^2+4x-5)(x^2+4x-21)=297

=>(x^2+4x)^2-26(x^2+4x)+105-297=0

=>x^2+4x=32 hoặc x^2+4x=-6(loại)

=>x^2+4x-32=0

=>(x+8)(x-4)=0

=>x=4 hoặc x=-8

b: =>(x^2-x-3)(x^2+x-4)=0

hay \(x\in\left\{\dfrac{1+\sqrt{13}}{2};\dfrac{1-\sqrt{13}}{2};\dfrac{-1+\sqrt{17}}{2};\dfrac{-1-\sqrt{17}}{2}\right\}\)

c: =>(x-1)(x+2)(x^2-6x-2)=0

hay \(x\in\left\{1;-2;3+\sqrt{11};3-\sqrt{11}\right\}\)

Nguyễn Ngọc Tho
Xem chi tiết
Nguyễn Anh Quân
14 tháng 3 2018 lúc 19:57

Đk : x >= -70

Đặt : \(\sqrt{x+70}=a\);  \(\sqrt{2x^2+4x+16}=b\)

=> 6x^2+10x-92 = 3b^2 - 2a^2

pt trở thành :

3b^2 - 2a^2 + ab = 0

<=> (3b^2+3ab)-(2ab+2a^2) = 0

<=> (a+b).(3b-2a) = 0

<=> a+b=0 hoặc 3b-2a = 0

<=> a=-b hoặc 2a=3b

Đến đó bạn tự thay vào mà làm nha

Tk mk nha