Bình phương 2 vế:
\(\Rightarrow28x^4-120x^3+136x^2-60x+7=0\)
Nhận thấy \(x=0\) không phải nghiệm, chia 2 vế cho \(x^2\)
\(\Leftrightarrow28x^2-120x+136-\frac{60}{x}+\frac{7}{x^2}=0\)
\(\Leftrightarrow7\left(4x^2+\frac{1}{x^2}\right)-60\left(2x+\frac{1}{x}\right)+136=0\)
Đặt \(2x+\frac{1}{x}=a\Rightarrow a^2-4=4x^2+\frac{1}{x^2}\)
\(\Rightarrow7\left(a^2-4\right)-60a+136=0\)
\(\Leftrightarrow7a^2-60a+108=0\) \(\Rightarrow\left[{}\begin{matrix}a=6\\a=\frac{18}{7}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x+\frac{1}{x}=6\\2x+\frac{1}{x}=\frac{18}{7}\end{matrix}\right.\) \(\Rightarrow...\)
Do ban đầu bình phương ko điều kiện nên nhớ thử nghiệm vào vế phải của pt ban đầu coi có dương ko, âm thì cần loại nghiệm.