Điều kiện tự xử nhé!
\(6x^2+10x-92+\sqrt{\left(x+70\right)\left(2x^2+4x+16\right)}=0\)(*)
Đặt \(a=\sqrt{x+70};\sqrt{2x^2+4x+16}=b\), (*) trở thành:
\(6x^2+10x-92+ab=0\)
\(\Leftrightarrow6x^2+12x+48-2x-140+ab=0\)
\(\Leftrightarrow3b^2-2a^2+ab=0\)
\(\Leftrightarrow3b^2+3ab-2ab-2a^2=0\)
\(\Leftrightarrow3b\left(a+b\right)-2a\left(a+b\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(3b-2a\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=-b\\3b=2a\end{matrix}\right.\)
Tới đây dễ rồi UwU
Chú ý rằng \(3\left(2x^2+4x+16\right)-2\left(x+70\right)=6x^2+10x-92\)
ĐKXĐ: \(x\ge-70\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x+70}=a\ge0\\\sqrt{2x^2+4x+16}=b>0\end{matrix}\right.\) \(\Rightarrow a+b>0\)
\(\Rightarrow6x^2+10x-92=3a^2-2b^2\)
Pt trở thành: \(3a^2+ab-2b^2=0\Leftrightarrow\left(3a-2b\right)\left(a+b\right)=0\)
\(\Leftrightarrow3a-2b=0\Rightarrow3a=2b\)
\(\Rightarrow3\sqrt{x+70}=2\sqrt{2x^2+4x+16}\Leftrightarrow9\left(x+70\right)=4\left(2x^2+4x+16\right)\)
\(\Leftrightarrow8x^2+7x-566=0\Rightarrow\left[{}\begin{matrix}x=...\\x=...\end{matrix}\right.\)