Vũ Minh Tuấn, Băng Băng 2k6, Hoàng Tử Hà, đề bài khó wá, Lê Gia Bảo, Aki Tsuki, Nguyễn Việt Lâm,
Lê Thị Thục Hiền, Nguyễn Trúc Giang, Học 24h, @tth_new, @Akai Haruma
Help me! Cần gấp
thanks!
Vũ Minh Tuấn, Băng Băng 2k6, Hoàng Tử Hà, đề bài khó wá, Lê Gia Bảo, Aki Tsuki, Nguyễn Việt Lâm,
Lê Thị Thục Hiền, Nguyễn Trúc Giang, Học 24h, @tth_new, @Akai Haruma
Help me! Cần gấp
thanks!
Giải các pt sau:
a) \(\sqrt{x+8}+\frac{9x}{\sqrt{x+8}}-6\sqrt{x}=0\)
b) \(x^4-2x^3+\sqrt{2x^3+x^2+2}-2=0\)
c) \(3x\sqrt[3]{x+7}\left(x+\sqrt[3]{x+7}\right)=7x^3+12x^2+5x-6\)
d) \(4x^2+\left(8x-4\right)\sqrt{x}-1=3x+2\sqrt{2x^2+5x-3}\)
e) \(16x^2+19x+7+4\sqrt{-3x^2+5x+2}=\left(8x+2\right)\left(\sqrt{2-x}+2\sqrt{3x+1}\right)\)
f) \(\left(5x+8\right)\sqrt{2x-1}+7x\sqrt{x+3}=9x+8-\left(x+26\right)\sqrt{x-1}\)
g) \(\sqrt[3]{3x+1}+\sqrt[3]{5-x}+\sqrt[3]{2x-9}-\sqrt[3]{4x-3}=0\)
a)\(\sqrt{1-x}\left(x-3x^2\right)=x^3-3x^2+2x+6\)
b)\(x^2+x+12\sqrt{x+1}=36\)
c)\(3x-1+\frac{x-1}{4x}=\sqrt{3x+1}\)
d)\(\sqrt{x^2+12}-3x=\sqrt{x^2+5}-5\)
e)\(4x^2+12+\sqrt{x-1}=4\left(x\sqrt{5x-1}+\sqrt{9-5x}\right)\)
f)\(4x^3-25x^2+43x+x\sqrt{3x-2}=22+\sqrt{3x-2}\)
g)\(2\left(x+1\right)\sqrt{x}+\sqrt{3\left(2x^3+5x^2+4x+1\right)}=5x^3-3x^2+8\)
h)\(\sqrt{x^2+12}-\sqrt{x^2+5}=3x-5\)
i)\(\sqrt{1-3x}-\sqrt[3]{3x-1}=\left|6x-2\right|\)
k)\(\sqrt{2x^3+3x^2-1}=2x^2+2x-x^3-1\)
l)\(\sqrt{x^2+x-2}+x^2=\sqrt{2\left(x-1\right)}+1\)
Giai phuong trinh
1/ \(\sqrt{x^2+4x+5}+\sqrt{x^2-6x+13}=3\)
2/ \(\sqrt{3x^2-18x+28}+\sqrt{4x^2-24x+45}=6x-x^2-5\)
3/ \(\sqrt{2x^2-4x+27}+\sqrt{3x^2-6x+12}=4x^2+8x+4\)
4/ \(\sqrt{x^2+x+7}+\sqrt{x^2+x+2}=\sqrt{3x^2+3x+19}\)
5/ \(\left(x+2\right)\left(x+3\right)-\sqrt{x^2+5x+1}=9\)
6/ \(\left(x+4\right)\left(x+1\right)-3\sqrt{x^2+5x+2}=6\)
7/ \(\sqrt{2x^2+3x+5}+\sqrt{2x^2-3x+5}=3\sqrt{x}\)
Giải phương trình:
1, \(8x^3-13x+7=\left(x+1\right)\sqrt[3]{3x^2-2}\)
2, \(9+3\sqrt{x\left(3-2x\right)}=7\sqrt{x}+5\sqrt{3-2x}\)
3, \(x^3-\sqrt[3]{6+\sqrt[3]{x+6}}=6\)
Giair phương trình
a, \(3\sqrt{\left(x+1\right)\left(x-3\right)}+x^2-2x=7\)
b, \(\sqrt{2x+3}+\sqrt{x+1}=3x+2\sqrt{2x^2+5x+3}-16\)
c, \(\left(x^2-4\right)+4\left(x-2\right).\sqrt{\frac{x+2}{x-2}}=3\)
d, \(\frac{9}{x^2}+\frac{2x}{\sqrt{2x^2+9}}=1\)
e, \(3\sqrt{2+x}-6\sqrt{2-x}+4\sqrt{4-x^2}=10-3x\)
Giải hệ pt
1/\(\left\{{}\begin{matrix}4x\sqrt{y+1}+8x=\left(4x^2-4x-3\right)\sqrt{x+1}\\\dfrac{x}{x+1}+x^2=\left(y+2\right)\sqrt{\left(x+1\right)\left(y+1\right)}\end{matrix}\right.\)
2/\(\left\{{}\begin{matrix}x\sqrt{y^2+6}+y\sqrt{x^2+3}=7xy\\x\sqrt{x^2+3}+y\sqrt{y^2+6}=x^2+y^2+2\end{matrix}\right.\)\(\left\{{}\begin{matrix}x\sqrt{y^2+6}+y\sqrt{x^2+3}=7xy\\x\sqrt{x^2+3}+y\sqrt{y^2+6}=x^2+y^2+2\end{matrix}\right.\)
3/\(\left\{{}\begin{matrix}\left(2x+y-1\right)\left(\sqrt{x+3}+\sqrt{xy}+\sqrt{x}\right)=8\sqrt{x}\\\left(\sqrt{x+3}+\sqrt{xy}\right)^2+xy=2x\left(6-x\right)\end{matrix}\right.\)\(\left\{{}\begin{matrix}\left(2x+y-1\right)\left(\sqrt{x+3}+\sqrt{xy}+\sqrt{x}\right)=8\sqrt{x}\\\left(\sqrt{x+3}+\sqrt{xy}\right)^2+xy=2x\left(6-x\right)\end{matrix}\right.\)
4/\(\left\{{}\begin{matrix}\sqrt{xy+x+2}+\sqrt{x^2+x}-4\sqrt{x}=0\\xy+x^2+2=x\left(\sqrt{xy+2}+3\right)\end{matrix}\right.\)\(\left\{{}\begin{matrix}\sqrt{xy+x+2}+\sqrt{x^2+x}-4\sqrt{x}=0\\xy+x^2+2=x\left(\sqrt{xy+2}+3\right)\end{matrix}\right.\)
m.n giúp e mấy bài này vs ạ!!
Giải phương trình:
1. \(x^2+3x+8=\left(x+5\right)\sqrt{x^2+x+2}\)
2. \(10x^2-9x-8x\sqrt{2x^2-3x+1}+3=0\)
3. \(x^3+6x^2-2x+3-\left(5x-1\right)\sqrt{x^3+3}=0\)
4. \(4\sqrt{x+1}-1=3x+2\sqrt{1-x}+\sqrt{1-x^2}\)
5. \(4\sqrt{x+3}=1+4x+\dfrac{2}{x}\)
Giải phương trình:
1, \(3x^2+6x-3=\sqrt{\dfrac{x+7}{3}}\) (2 cách khác nhau )
2, \(\left(\sqrt{3x+1}-\sqrt{x-2}\right)\left(\sqrt{3x^2+7x+2}+4\right)=4x-2\)
3, \(\sqrt{-3x-1}+\sqrt{9x^2+9x+3}=-9x^2-6x\)
4, \(\sqrt{x^2+x-6}+3\sqrt{x-1}=\sqrt{5x^2-1}\)
5, \(\left(\sqrt{x+4}+2\right)\left(x+2\sqrt{x-5}+1\right)=6x\)
6, \(\sqrt{5-x^4}-\sqrt[3]{3x^2-2}=1\)
7, \(3x^2+11+\sqrt{x-2}+\sqrt{2x+3}=14x\)
8, \(\sqrt{x-\sqrt{x-\sqrt{x-\sqrt{x-7}}}}=7\)
9, \(\sqrt{2x^2-1}+3x\sqrt{x^2-1}=3x^3+2x^2-9x-7\) ( với \(x>0\) )
Giải PT và HPT
a) \(\sqrt{10x+1}+\sqrt{3x-5}=\sqrt{9x+4}+\sqrt{2x-2}\)
b) \(\left\{{}\begin{matrix}x^2-5y^2-8y=3\\\left(2x+4y-1\right)\sqrt{2x-y-1}=\left(4x-2y-3\right)\sqrt{x+2y}\end{matrix}\right.\)