Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
an thi an an
Xem chi tiết
nguyễn ngọc hà linh
Xem chi tiết
kênh youtube: chaau high...
Xem chi tiết
TikTok Trend
Xem chi tiết
Akai Haruma
13 tháng 5 2021 lúc 17:52

Lời giải:

$\Delta'=4+m^2+1=5+m^2>0$ với mọi $m\in\mathbb{R}$ nên pt luôn có 2 nghiệm phân biệt với mọi $m\in\mathbb{R}$

Áp dụng định lý Viet: \(\left\{\begin{matrix} x_1+x_2=-4\\ x_1x_2=-(m^2+1)\end{matrix}\right.\)

Khi đó:

\(\frac{x_1}{x_2}+\frac{x_2}{x_1}=\frac{-5}{2}\Leftrightarrow \frac{x_1^2+x_2^2}{x_1x_2}=-\frac{5}{2}\)

\(\Leftrightarrow \frac{(x_1+x_2)^2-2x_1x_2}{x_1x_2}=\frac{-5}{2}\Leftrightarrow \frac{(x_1+x_2)^2}{x_1x_2}=-\frac{1}{2}\)

\(\Leftrightarrow \frac{16}{-(m^2+1)}=\frac{-1}{2}\Leftrightarrow m^2+1=32\)

\(\Rightarrow m=\pm \sqrt{31}\)

Lê Quỳnh
Xem chi tiết
Lê Thị Thục Hiền
30 tháng 5 2021 lúc 21:47

Thay m=-1 vào pt ta được: 

\(x^2+4x-5=0\)\(\Leftrightarrow\left(x-1\right)\left(x+5\right)=0\)\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-5\end{matrix}\right.\)

Có \(ac=-5< 0\) =>Pt luôn có hai nghiệm pb trái dấu

Theo viet có:\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\2x_1-x_2=11\\x_1x_2=-5\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x_1+2x_1-11=2\left(m-1\right)\\x_2=2x_1-11\\x_1x_2=-5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{2m+9}{3}\\x_2=\dfrac{4m-15}{3}\\x_1x_2=-5\end{matrix}\right.\)

\(\Rightarrow\left(\dfrac{2m+9}{3}\right)\left(\dfrac{4m-15}{3}\right)=-5\)\(\Leftrightarrow8m^2+6m-90=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=3\\m=-\dfrac{15}{4}\end{matrix}\right.\)

Vậy...

Thạch Hằng
Xem chi tiết
Nguyễn Trọng Chiến
7 tháng 3 2021 lúc 16:38

a Khi m=-2 \(\Rightarrow x^2+\left(-2-2\right)x+-2+5=0\Leftrightarrow x^2-4x+3=0\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\) b Theo hệ thức Vi-et có :

\(\Rightarrow\left\{{}\begin{matrix}x_1+x_2=2-m\\x_1x_2=m+5\end{matrix}\right.\)

Mà \(\left(x_1+x_2\right)^2-2x_1x_2=x_1^2+x_2^2=10\Rightarrow\left(2-m\right)^2-2\left(m+5\right)=10\Leftrightarrow m^2-4m+4-2m-10=10\Leftrightarrow m^2-6m-16=0\Leftrightarrow m^2+2m-8m-16=0\Leftrightarrow\left(m+2\right)\left(m-8\right)=0\Leftrightarrow\left[{}\begin{matrix}m=-2\\m=8\end{matrix}\right.\)

Nguyễn Lê Phước Thịnh
7 tháng 3 2021 lúc 19:01

a) Thay m=-2 vào phương trình, ta được:

\(x^2-4x+3=0\)

\(\Leftrightarrow x^2-x-3x+3=0\)

\(\Leftrightarrow x\left(x-1\right)-3\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)

Vậy: Khi m=-2 thì phương trình có hai nghiệm phân biệt là S={1;3}

Võ Phi Nhung
Xem chi tiết
Nguyễn Thị BÍch Hậu
15 tháng 6 2015 lúc 21:46

xem lại đề đì em. cái x1,x2 thỏa mãn nó k có x2 @@

Nguyễn Minh Khang 9/9
Xem chi tiết
Nguyễn Huy Tú
16 tháng 2 2022 lúc 19:11

bạn đăng tách ra cho mn giúp nhé 

a, Để pt có 2 nghiệm pb 

\(\Delta'=1-m\ge0\Leftrightarrow m\le1\)

Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=-2\left(1\right)\\x_1x_2=m\left(2\right)\end{matrix}\right.\)

\(x_1-3x_2=0\)(3) 

Từ (1) ; (3) ta có hệ \(\left\{{}\begin{matrix}x_1+x_2=-2\\x_1-3x_2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x_1=-2\\x_2=-2-x_1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=-\dfrac{1}{2}\\x_2=-\dfrac{3}{2}\end{matrix}\right.\)

Thay vào (2) ta được \(m=\left(-\dfrac{1}{2}\right)\left(-\dfrac{3}{2}\right)=\dfrac{3}{4}\)

missing you =
16 tháng 2 2022 lúc 20:00

\(b,\Delta=\left(m+5\right)^2-4\left(-m+6\right)\ge0\Leftrightarrow\left[{}\begin{matrix}m\le-7-4\sqrt{3}\\m\ge-7+4\sqrt{3}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x1+x2=m+5\\2x1+3x2=13\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x1+2x2=2m+10\\2x1+3x2=13\end{matrix}\right.\)\(\)

\(\Rightarrow x2=13-2m-10=3-2m\Rightarrow x1=m+5-x2=m+5-3+2m=3m+2\)

\(x1x2=6-m\Rightarrow\left(3-2m\right)\left(3m+2\right)=6-m\Leftrightarrow\left[{}\begin{matrix}m=0\left(tm\right)\\m=1\left(tm\right)\end{matrix}\right.\)

\(c,\Delta'=\left(m+1\right)^2-\left(m^2-2m+29\right)\ge0\Leftrightarrow m\ge7\)

\(\Rightarrow\left\{{}\begin{matrix}x1+x2=2m+2\\x1=2x2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x2=\dfrac{2m+2}{3}\\x1=\dfrac{2\left(2m+2\right)}{3}\end{matrix}\right.\)

\(\Rightarrow x1.x2=\dfrac{\left(2m+2\right).2\left(2m+2\right)}{9}=m^2-2m+29\Leftrightarrow\left[{}\begin{matrix}m=11\left(tm\right)\\m=23\left(tm\right)\end{matrix}\right.\)

Nguyễn Ngân
Xem chi tiết
𝓓𝓾𝔂 𝓐𝓷𝓱
12 tháng 6 2021 lúc 22:46

bạn xem lại biểu thức trong đề bài 

Phác Kiki
Xem chi tiết
Trần Đăng Nhất
8 tháng 4 2020 lúc 12:57

8.3/ Để phương trình có 2 nghiệm phân biệt thì \(\Delta'=\left(m-4\right)^2-\left(m^2+7\right)=-8m+9>0\) \(\Leftrightarrow m< \frac{9}{8}\)

Theo định lý \(viete:\left\{{}\begin{matrix}x_1+x_2=2\left(m+4\right)\\x_1x_2=m^2+7>0\forall x\in R\end{matrix}\right.\)

Ta có: \(\left|x_1\right|+\left|x_2\right|=12\Leftrightarrow x_1^2+x^2_2+2\left|x_1x_2\right|=144\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2+2x_1x_2=\left(x_1+x_2\right)=144\)

\(\Leftrightarrow2\left(m+4\right)=144\Leftrightarrow m+4=72\Leftrightarrow m=68\) (T/m)

KL: ...........

Trần Đăng Nhất
8 tháng 4 2020 lúc 13:01

8.4/ Để phương trình có 2 nghiệm phân biệt thì \(\Delta'=\left(m+5\right)^2-\left(m^2+6\right)=10m+19>0\Leftrightarrow x>-\frac{19}{10}\)

Theo định lý viete, ta có: \(\left\{{}\begin{matrix}x_1+x_2=-2\left(m+5\right)\\x_1x_2=m^2+6>0\forall x\in R\end{matrix}\right.\)

Ta có: \(\left|x_1\right|+\left|x_2\right|=16\Leftrightarrow x_1^2+x^2_2+2\left|x_1x_2\right|=256\Leftrightarrow\left(x_1+x_2\right)=256\)

\(\Leftrightarrow-2\left(m+5\right)=256\Leftrightarrow m+5=-128\Leftrightarrow m=-133\) (không t/m)

Vậy khôn tồn tại m thõa mãn ycbt

Trần Đăng Nhất
8 tháng 4 2020 lúc 13:06

8.5/ Thay $m=2$ vào ta được

a) \(x^2-10x+9=0\Leftrightarrow\left(x-1\right)\left(x-9\right)=0\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-9=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=9\end{matrix}\right.\)

b) Để phương trình có 2 nghiệm phân biệt thì \(\Delta'=\left(m+3\right)^2-\left(m^2+5\right)=6m+4>0\Leftrightarrow m>-\frac{2}{3}\)

Theo định lý viete, ta có: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+3\right)\\x_1x_2=m^2+5>0\forall x\in R\end{matrix}\right.\)

Khi đó: \(\left|x_1\right|+\left|x_2\right|=10\Leftrightarrow x_1^2+x_2^2+2x_1x_2=100\Leftrightarrow\left(x_1+x_2\right)^2=100\Leftrightarrow x_1+x_2=10\Leftrightarrow2\left(m+3\right)=10\Leftrightarrow m=2\)(T/M)

KL: .............