Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ngốc Trần
Xem chi tiết
Vũ Hà Ánh
Xem chi tiết
Đào Hương Giang
Xem chi tiết
Thắng Nguyễn
12 tháng 5 2016 lúc 11:31

Thay x=1 ta được

(1-1).f(1)=(1+4).f(1+8)

<=>5.f(9)=0

<=>f(9)=0

suy ra 9 là nghiệm của f(x)

Thay x=-4 ta được:

(-4-1).f(-4)=(-4+4).F(-4+8)

<=>-5.f(-4)=0

<=>f(-4)=0

suy ra -4 là nghiệm của f(x)

Vậy f(x) có ít nhất 2 nghiệm là -4 và 9

Real Madrid
Xem chi tiết
Real Madrid
2 tháng 7 2016 lúc 17:56

a. Cho đa thức: x – 1/2 x2 = 0

-Phân tích được: x(1 – 1/2x) = 0

– suy ra:  x = 0  hoặc: 1 – 1/2x = 0 ⇒ x = 2

– Vậy nghiệm của đa thức đã cho là x = 0; x = 2.

b.Cho biết (x – 1).f(x) = (x + 4). f(x + 8) với mọi x

Chứng minh rằng f(x) có ít nhất hai nghiệm.

Vì (x – 1).f(x) = (x + 4). f(x + 8) với mọi x nên ta có:

+ Khi x = 1 thì  0.f(1) = (1 + 4).f(1 + 8)

⇒   0 = 5. f(9) ⇒  f(9) = 0

⇒ x = 9 là một nghiệm của f(x)

+ Khi x= – 4 thì (- 4 – 1).f(-4) = 0. f(-4 + 8)

⇒ -5.f(-4) = 0.f(4) ⇒ f(-4) = 0

⇒ x= – 4 là một nghiệm của f(x)

Vậy f(x) có ít nhất hai nghiệm là 1 và – 4  (đpcm)

 
  
Real Madrid
2 tháng 7 2016 lúc 17:59

nha bạn nào k cho mình nhớ nhắn tin cho mình biết mình sẽ k lại cho

Real Madrid
2 tháng 7 2016 lúc 17:59

nha k mình đi mình k lại cho nhé

Nguyễn Minh Phúc
Xem chi tiết
Nguyễn Minh Đức
26 tháng 1 2023 lúc 22:13

Vì (2x-4). F(x) = (x-1).F(x+1) với mọi x nên 

+) Khi x=2 thì 0.F(2) = 1.F(3) => F(3) = 0

Vậy x=3 là một nghiệm của F(x).

+) Khi x = 1 thì -2F(1) = 0.F(2) => F(1) = 0

Vậy x = 1 là một nghiệm của F(x) 

Do đó F (x) có ít nhất hai nghiệm là 3 và 1. 
~ Chúc b học tốt nhaa~

Bui Thi Thu Phuong
Xem chi tiết
Trương Quang Hải
20 tháng 2 2016 lúc 13:18

 Thay x=1 ta được 
(1-1).f(1)=(1+4).f(1+8) 
<=>5.f(9)=0 
<=>f(9)=0 
suy ra 9 là nghiệm của f(x) 

Thay x=-4 ta được: 
(-4-1).f(-4)=(-4+4).F(-4+8) 
<=>-5.f(-4)=0 
<=>f(-4)=0 
suy ra -4 là nghiệm của f(x) 

Vậy f(x) có ít nhất 2 nghiệm là -4 và 9

Big Boss
3 tháng 3 2017 lúc 12:30

Thay x=1 ta được 
(1-1).f(1)=(1+4).f(1+8) 
<=>5.f(9)=0 
<=>f(9)=0 
Suy ra 9 là nghiệm của f(x) 

Thay x=-4 ta được: 
(-4-1).f(-4)=(-4+4).F(-4+8) 
<=>-5.f(-4)=0 
<=>f(-4)=0 
Suy ra -4 là nghiệm của f(x) 

Vậy f(x) có ít nhất 2 nghiệm là -4 và 9

Nguyễn Thị Ngọc Ánh
Xem chi tiết
O=C=O
24 tháng 4 2018 lúc 0:24

Thay x=1 ta được (1-1).f(1)=(1+4).f(1+8)

<=>5.f(9)=0

<=>f(9)=0 suy ra 9 là nghiệmcủa f(x)

Thay x=-4 ta được: (-4-1).f(-4)=(-4+4).F(-4+8)

<=>-5.f(-4)=0 <=>f(-4)=0

=> -4 là nghiệmcủa f(x) Vậy f(x) có ít nhất 2 nghiệm là -4 và 9.

Trần Thị Hảo
Xem chi tiết
Akai Haruma
14 tháng 5 2019 lúc 18:20

Lời giải:

\((x+1)f(x)=(x+4)f(x+8)\)

Thay $x=-1$ ta có: \(0.f(-1)=3f(7)\Leftrightarrow f(-7)=\frac{0.f(-1)}{3}=0\)

Thay $x=-4$ ta có: \(-3f(-4)=0.f(4)=0\Rightarrow f(-4)=0\)

Từ đây ta suy ra \(x=-4; x=-7\) là 2 nghiệm của đa thức $f(x)$. Chứng tỏ $f(x)$ có ít nhất 2 nghiệm (vì có thể có những nghiệm khác mà ta chưa chỉ ra) (đpcm)

Trí Tiên亗
Xem chi tiết
Xyz OLM
2 tháng 7 2020 lúc 21:59

Nếu x = 1 

=> (x - 1).f(x) = (x + 4).f(x + 8) (1)

=> 0.f(1) = 5.f(9)

=> f(9) = 0

=> x = 1 là 1 nghiệm của f(x)

Nếu x = -4

=> (1) <=> 3.f(-4) = 0.f(4)

=> 3.f(-4) = 0

=> f(-4) = 0

=> x = -4 là 1 nghiệm của f(x) 

=> F(x) có ít nhất 2 nghiệm

Khách vãng lai đã xóa