Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Minh Hiệu
Xem chi tiết
alibaba nguyễn
28 tháng 11 2016 lúc 10:52

Ta có

\(M=\frac{2015a}{ab+2015a+2015}+\frac{b}{bc+b+2015}+\frac{c}{ac+c+1}\)

\(=\frac{abc.a}{ab+abc.a+abc}+\frac{b}{bc+b+abc}+\frac{c}{ac+c+1}\)

\(=\frac{ac}{1+ac+c}+\frac{1}{c+1+ac}+\frac{c}{ac+c+1}\)

\(=\frac{ac+c+1}{ac+c+1}=1\)

Vongola Famiglia
28 tháng 11 2016 lúc 11:04

ôi câu hỏi hay có khác j câu này Câu hỏi của Lê Phương Thảo - Toán lớp 8 - Học toán với OnlineMath

Nguyễn Huy Tú
28 tháng 11 2016 lúc 11:45

\(M=\frac{2015.a}{ab+2015.a+2015}+\frac{b}{bc+b+2015}+\frac{c}{ac+c+1}\)

\(\Rightarrow M=\frac{abca}{ab+abca+abc}+\frac{b}{bc+b+abc}+\frac{c}{ac+c+1}\)

\(\Rightarrow M=\frac{a^2.b.c}{ab\left(1+ac+c\right)}+\frac{b}{b\left(c+1+ac\right)}+\frac{c}{ac+c+1}\)

\(\Rightarrow M=\frac{ac}{ac+c+1}+\frac{1}{ac+c+1}+\frac{c}{ac+c+1}\)

\(\Rightarrow M=\frac{ac+1+c}{ac+c+1}\)

\(\Rightarrow M=1\)

Vậy M = 1

Linh_Men
Xem chi tiết
Linh_Men
26 tháng 11 2017 lúc 21:30

abc = 2015 :))

pham trung thanh
26 tháng 11 2017 lúc 21:33

https://olm.vn/hoi-dap/question/764972.html

vuong que chi
26 tháng 11 2017 lúc 21:34

tự hỏi vs tự trả lời

Võ Quốc ANH
Xem chi tiết
Rosie
Xem chi tiết
Vũ Minh Tuấn
22 tháng 1 2020 lúc 18:02

Ta có:

\(A=\frac{2015a}{ab+2015a+2015}+\frac{b}{bc+b+2015}+\frac{c}{ac+c+1}\)

\(\Rightarrow A=\frac{abca}{ab+abca+abc}+\frac{b}{bc+b+abc}+\frac{c}{ac+c+1}\)

\(\Rightarrow A=\frac{a^2bc}{ab.\left(1+ac+c\right)}+\frac{b}{b.\left(c+1+ac\right)}+\frac{c}{ac+c+1}\)

\(\Rightarrow A=\frac{ac}{1+ac+c}+\frac{1}{c+1+ac}+\frac{c}{ac+c+1}\)

\(\Rightarrow A=\frac{ac}{ac+1+c}+\frac{1}{ac+1+c}+\frac{c}{ac+1+c}\)

\(\Rightarrow A=\frac{ac+1+c}{ac+1+c}\)

\(\Rightarrow A=1.\)

Vậy \(A=1.\)

Chúc bạn học tốt!

Khách vãng lai đã xóa
Nguyễn Thành Trương
22 tháng 1 2020 lúc 20:03

Thay $abc=2015$ vào $A$ ta có:

\(\begin{array}{l} A = \dfrac{{{a^2}bc}}{{ab + {a^2}bc + abc}} + \dfrac{b}{{bc + b + abc}} + \dfrac{c}{{ac + c + 1}}\\ A = \dfrac{{{a^2}bc}}{{ab\left( {1 + ac + c} \right)}} + \dfrac{b}{{b\left( {c + 1 + ac} \right)}} + \dfrac{c}{{ac + c + 1}}\\ A = \dfrac{{ac}}{{ac + c + 1}} + \dfrac{1}{{ac + c + 1}} + \dfrac{c}{{ac + c + 1}}\\ A = \dfrac{{ac + c + 1}}{{ac + c + 1}} = 1 \end{array}\)

Khách vãng lai đã xóa
My Bùi Ngọc  Thảo
Xem chi tiết
nguyễn thị tiêu nương
Xem chi tiết
Nguyen Dinh Minh Tu
Xem chi tiết
Nguyễn Nhật Minh
16 tháng 12 2015 lúc 17:10

\(M=\frac{abc.a}{ab+abc.a+abc}+\frac{b}{bc+b+abc}+\frac{c}{ac+c+a}=\frac{ac}{1+ac+c}+\frac{1}{c+1+ac}+\frac{c}{ac+c+a}=\frac{ac+c+1}{ac+c+1}=1\)

Luân Đào
Xem chi tiết
Nguyễn Hữu Tuyên
Xem chi tiết
Nguyễn Huy Tú
8 tháng 1 2017 lúc 13:57

Ta có:
\(M=\frac{2015a}{ab+2015a+2015}+\frac{b}{bc+b+2015}+\frac{c}{ac+c+1}\)

\(\Rightarrow M=\frac{abca}{ab+abca+abc}+\frac{b}{bc+b+abc}+\frac{c}{ac+c+1}\)

\(\Rightarrow M=\frac{abca}{ab\left(1+ac+c\right)}+\frac{b}{b\left(c+1+ac\right)}+\frac{c}{ac+c+1}\)

\(\Rightarrow M=\frac{ac}{ac+c+1}+\frac{1}{ac+c+1}+\frac{c}{ac+c+1}\)

\(\Rightarrow M=\frac{ac+c+1}{ac+c+1}=1\)

Vậy M = 1

Dennis
8 tháng 1 2017 lúc 15:05

Thay 2015= abc vào M ta được:

M = \(\frac{abca}{ab+abca+abc}\) + \(\frac{b}{bc+b+abc}\) + \(\frac{c}{ac+c+1}\)

M = \(\frac{abca}{ab\left(1+ac+c\right)}\) + \(\frac{b}{b\left(c+1+ac\right)}\) + \(\frac{c}{ac+c+1}\)

M = \(\frac{ac}{1+ac+c}\) + \(\frac{1}{c+1+ac}\) + \(\frac{c}{ac+c+1}\)

M = \(\frac{1+ac+c}{1+ac+c}\) = 1

Vây M = 1

XONG ! ok

Trần Khởi My
8 tháng 1 2017 lúc 17:56

Thay abc=2015 vào biểu thức M, ta có:

M=\(\frac{a^2bc}{ab+a^2bc+abc}\)+\(\frac{b}{bc+b+abc}\)+\(\frac{c}{ac+c+1}\)

=\(\frac{a^2bc}{ab\left(1+ac+c\right)}\)+\(\frac{b}{b\left(c+1+ac\right)}\)+\(\frac{c}{ac+c+1}\)

=\(\frac{ac}{ac+c+1}\)+\(\frac{1}{ac+c+1}\)+\(\frac{c}{ac+c+1}\)

=\(\frac{ac+c+1}{ac+c+1}\)

=1

Vậy M=1

CHÚC BẠN HỌC TỐT NHEbanhqua