Ta có:
\(A=\frac{2015a}{ab+2015a+2015}+\frac{b}{bc+b+2015}+\frac{c}{ac+c+1}\)
\(\Rightarrow A=\frac{abca}{ab+abca+abc}+\frac{b}{bc+b+abc}+\frac{c}{ac+c+1}\)
\(\Rightarrow A=\frac{a^2bc}{ab.\left(1+ac+c\right)}+\frac{b}{b.\left(c+1+ac\right)}+\frac{c}{ac+c+1}\)
\(\Rightarrow A=\frac{ac}{1+ac+c}+\frac{1}{c+1+ac}+\frac{c}{ac+c+1}\)
\(\Rightarrow A=\frac{ac}{ac+1+c}+\frac{1}{ac+1+c}+\frac{c}{ac+1+c}\)
\(\Rightarrow A=\frac{ac+1+c}{ac+1+c}\)
\(\Rightarrow A=1.\)
Vậy \(A=1.\)
Chúc bạn học tốt!
Thay $abc=2015$ vào $A$ ta có:
\(\begin{array}{l} A = \dfrac{{{a^2}bc}}{{ab + {a^2}bc + abc}} + \dfrac{b}{{bc + b + abc}} + \dfrac{c}{{ac + c + 1}}\\ A = \dfrac{{{a^2}bc}}{{ab\left( {1 + ac + c} \right)}} + \dfrac{b}{{b\left( {c + 1 + ac} \right)}} + \dfrac{c}{{ac + c + 1}}\\ A = \dfrac{{ac}}{{ac + c + 1}} + \dfrac{1}{{ac + c + 1}} + \dfrac{c}{{ac + c + 1}}\\ A = \dfrac{{ac + c + 1}}{{ac + c + 1}} = 1 \end{array}\)