Cho \(a\ge2015;b\ge2017;c\ge2019\). Tìm GTLN của
\(S=\dfrac{bc\sqrt{a-2015}+ca\sqrt{b-2017}+ab\sqrt{c-2019}}{abc}\)
Cho các số dương \(a,b,c\) thoả mãn \(a+b+c=3\). Chứng minh rằng: \(\dfrac{a^2+bc}{b+ca}+\dfrac{b^2+ca}{c+ab}+\dfrac{c^2+ab}{a+bc}\ge3\)
Cho a,b,c,d khác 0 sao cho ab=cd. CM a2015+b2017+c2015+d2017 là hợp số
Cho a,b,c là các số thực dương thoả mãn \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\le3\)Chứng minh rằng \(\dfrac{a}{1+b^2}+\dfrac{b}{1+c^2}+\dfrac{c}{1+a^2}+\dfrac{1}{2}\left(ab+bc+ca\right)\ge3\)
\(A=\sqrt{1^3+2^3+...+2015^3}\)
Tính giá trị của A
Câu 2: cho các số thực a,b thỏa mãn \(a^2+b^2=125\) va ab=22
Tính B=a-b+2015
Cho 3 số thực a,b,c thoả a2+b2+c2 -7a-8b-9c+25=0.Tính P=(a-2)2014 +(b-3)2015 +(c-4)2016
Cho các số a,b,c thỏa mãn \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a+b+c}\left(a,b,c\ne0\right)\).
Tính giá trị của biểu thức \(N=\left(a^{15}+b^{15}\right)\left(b^{27}+c^{27}\right)\left(c^{2015}+a^{2015}\right)\)
Cho a , b , c là các số thực dương thỏa mãn : \(7\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)=6\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\right)+2015\)
Tìm GTLN của biểu thức \(P=\dfrac{1}{\sqrt{3\left(2a^2+b^2\right)}}+\dfrac{1}{\sqrt{3\left(2b^2+c^2\right)}}+\dfrac{1}{\sqrt{3\left(2c^2+a^2\right)}}\)
cho a,b,c>0 thỏa mãn a+b+c=1. CMR: \(P=\sqrt{\dfrac{ab}{c+ab}}+\sqrt{\dfrac{bc}{a+bc}}+\sqrt{\dfrac{ca}{b+ca}}\le\dfrac{3}{2}\)