Cho tam giác ABC cân tại A(Â nhọn) vẽ AH vuông góc với BC (H thuộc BC)
Chứng minh tam giác AHB=AHC
Cho tam giác ABC cân tại A(góc A nhọn). Vẽ AH vuông góc với BC (H thuộc BC). a. Chứng minh tam giác AHB bằng tam giác AHC b. Đường thẳng qua H song song với AB cắt AC tại D. Gọi M là trung điểm của HC. Chứng minh tam giác DHC cân và DM song song với AH.
giúp em câu b
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
=>ΔAHB=ΔAHC
b: Xét ΔABC có
H là trung điểm của CB
HD//AB
=>D là trung điểm của AC
ΔAHC vuông tại H có HD là trung tuyến
nên DH=DC
=>ΔDHC cân tại D
=>DM vuông góc HC
=>DM//AH
Cho tam giác ABC cân tại A( góc A nhọn ). Vẽ AH vuông góc BC tại H
a) Chứng minh tam giác AHB = tam giác AHC và H là trung điểm BC.
b) Gọi I là trung điểm AC. Qua A vẽ đường thẳng song song BC cắt HI tại D. Chứng minh AD = HC.
c) AH cắt BI tại G. Qua H vẽ đường thẳng b song song AC cắt AB tại M. Chứng minh tam giác MAM cân và 3 điểm C, G, M thẳng hàng.
GIÚP MIK VS Ạ! CẢM ƠN MN NHÌU!
a)
Cách 1 là:
Xét 🔺AHB vuông tại H1 và 🔺AHB vuông tại H2 ,ta có:
AC=AB(vì là tam giác cân)
góc B= góc C(vì là tam giác cân)
=>🔺AHC=🔺AHC cạnh huyền-góc nhọn)
=> H là trung điểm của BC
Cách 2:
Xét 🔺AHC vuông tại H1 và 🔺 AHB vuông tại H2 ,ta có:
AB=AC(vì là tam giác cân)
AH là cạnh chung
=> 🔺AHC=🔺 AHB ( cạnh huyền góc vuông)
=> H là trung điểm của BC
b)
Cho tam giác ABC cân tại A. Kẻ AH vuông góc với BC (H thuộc BC). Chứng minh ∆ A H B = ∆ A H C .
Chứng minh được △ A H B = △ A H C (cạnh huyền - cạnh góc vuông)
Cho tam giác ABC cân tại A vẽ AH vuông góc với BC ( H thuộc BC)
a) Chứng minh tam giác AHB bằng tam giác AHC?
b) Trên tia đối tia HA lấy điểm D sao cho HA=HD, chứng minh tam giác ACD cân tại C?
c) Chứng minh: HA < 1/2( AC + CD)
a) Xét tam giác ABC cân tại A: AH là đường cao (AH vuông góc với BC)
=> AH là đường trung tuyến (TC tam giác cân)
=> H à TĐ của BC
=> BH = HC
Xét tam giác AHB và tam giác AHC:
BH = HC (cmt)
^AHB = ^AHC (90o)
AH chung
=> tam giác AHB = tam giác AHC (ch - cgv)
b) Ta có: HA = HD (gt) => H là TĐ của AD
Xét tam giác ACD có:
CH là đường cao (CH vuông góc AD)
CH là trung tuyến (H là TĐ của AD)
=> tam giác ACD cân tại C
c) Xét tam giác ACD cân tại A có:
AD > AC + CD (Bất đẳng thức trong tam giác)
=> \(\dfrac{1}{2}AD=\dfrac{1}{2}\left(AC+CD\right)\)
Mà \(HA=\dfrac{1}{2}AD\) (H là TĐ của AD)
=> \(HA>\dfrac{1}{2}\left(AC+CD\right)\) (ĐPCM)
Cho tam giác ABC cân tại A ( AB=AC) .Kẻ AH vuông góc BC (H thuộc BC ) ,HE vuông góc AB , HF vuông góc AC .
Chứng minh :
a) Tam giác AHB = tam giác AHC
b) Tam giác HEB = tam giác HFC
c) AH vuông góc EF
a, Xét ∆ ABH và ∆AHC có:
+AH chung
+ ∠AHB= ∠AHC(=90*)
+AB=AC(△ ABC cân)
=> △AHB=△AHC(ch-cgv)
=>BH=HC(2 cạnh tương ứng)
b) Xét △ HEB và △HFC có:
+ ∠BEH= ∠CFH(=90*)
+HB=HC(cmt)
+ ∠B= ∠C(△ABC cân)
=> △HEB=△HFC(ch-cgnhon)
Bạn tự vẽ hình.
a, Dễ dàng chứng minh \(\Delta AHB=\Delta AHC\left(ch.gn\right)\)hoặc \(\Delta AHB=\Delta AHC\left(ch.cgv\right)\)
b, \(\Delta ABC\) cân tại A, \(AH\perp BC\)
=> AH là đường trung tuyến
=> \(BH=HC=\frac{BC}{2}=\frac{6}{2}=3cm\)
Áp dụng định lí pitago vào \(\Delta ABH\) vuông tại H
Từ đó, tính được \(AH=\sqrt{5^2-3^2}=4cm\)
Cho tam giác ABC cân tại A. kẻ AH vuông góc với BC tại H a) chứng minh: tam giác AHB = AHC b) từ H vẽ HE vuông AB tại E, HF vuông AC tại F. Chứng minh HE = HF c) Qua H kẻ đường thẳng song song AB cắt AC tại K . chứng minh K là trung điểm AC
Câu 4:
a: Xét ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC
AH chung
Do đó: ΔABH=ΔACH
b: Xét ΔAEH vuông tại E và ΔAFH vuông tại F có
AH chung
\(\widehat{EAH}=\widehat{FAH}\)
Do đó: ΔAEH=ΔAFH
Suy ra:HE=HF
Cho tam giác ABC cân tại A. Từ A kẻ AH vuông góc với BC tại H (H€BC ). Viết giả thiết, kết luận , vẽ hình, chứng minh ∆AHB=∆AHC
GT ∆ABC cân tại A, AH BC
KL AHB = AHC
Xét hai tam giác vuông: ∆AHB và ∆AHC có:
AH chung
AB = AC (∆ABC cân tại A)
⇒ ∆AHB = ∆AHC (cạnh huyền - cạnh góc vuông)
Có `AH⊥BC(GT)=>hat(H_1)=hat(H_2)(=90^0`
`Delta ABC` cân tại `A=>AB=AC`
Xét `Delta AHB` và `Delta AHC` có :
`{:(hat(H_1)=hat(H_2)(=90^0)),(AB=AC(cmt)),(AH-chung):}}`
`=>Delta AHB=Delta AHC(ch-cgv)(đpcm)`
Cho tam giác ABC cân tại A. Vẽ AH vuông góc BC. a) Chứng minh tam giác AHB=tam giác AHC b) Vẽ HM vuông góc AB, HN vuông góc AC, chứng minh tam giác AMN cân c) Chứng minh MN song song với BC d) Chứng minh AH ^2 + BM^2=AN^2 +BH^2
Vẽ hộ em hình nwuax ạ
a, Xét tam giác AHB và tam giác AHC có
AH _ chung
AB = AC
Vậy tam giác AHB~ tam giác AHC (ch-cgv)
Ta có tam giác ABC cân tại A, có AH là đường cao
đồng thười là đường pg
b, Xét tam giác AMH và tam giác NAH có
HA _ chung
^MAH = ^NAH
Vậy tam giác AMH = tam giác NAH (ch-gn)
=> AM = AN ( 2 cạnh tương ứng )
c, Ta có AM/AB = AN/AC => MN // BC
d, Ta có \(AH^2+BM^2=AN^2+BH^2\)
Xét tam giác BMH vuông tại M \(MB^2=BH^2-MH^2\)
Thay vào ta được \(AH^2+BH^2-MH^2=AN^2+BH^2\Leftrightarrow AH^2-MH^2=AN^2\)
Lại có AM = AN (cmt)
\(AM^2=AH^2-MH^2\)( luôn đúng trong tam giác AMH vuông tại M)
Vậy ta có đpcm
Cho tam giác ABC cân tại A. Kẻ AH vuông góc BC (H thuộc BC).
a/ Chứng minh Tam giác AHB = Tam giác AHC. Từ đó suy ra HB = HC
b/ Biết AH = 8 cm, BC = 12 cm. Tính độ dài AC.
c/ Kẻ HD vuông góc với AB (D thuộc AB), kẻ HE vuông góc với AC (E thuộc AC). Chứng minh Tam giác HDE cân.
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
=>ΔAHB=ΔAHC
=>HB=HC
b: BH=CH=12/2=6cm
=>AC=căn AH^2+HC^2=10cm
c: Xét ΔADH vuông tại D và ΔAEH vuông tại E có
AH chung
góc DAH=góc EAH
=>ΔADH=ΔAEH
=>HD=HE
=>ΔHDE cân tại H