cho các số thực dương x , y thỏa mãn x + y = 2 . CMR \(\frac{x}{1+y^2}+\frac{y}{1+x^2}\ge1\)
cho các số thực dương x , y thỏa mãn : x + y = 2 . CMR \(\frac{x}{1+y^2}+\frac{y}{1+x^2}\ge1\)
@Nguyễn Việt Lâm e xin góp 1 cách khác
\(\frac{x}{1+y^2}+\frac{y}{1+x^2}\ge\frac{x^2}{x+xy^2}+\frac{y^2}{y+yx^2}\ge\frac{\left(x+y\right)^2}{x+y+xy\left(x+y\right)}=\frac{\left(x+y\right)^2}{x+y+2xy}\ge\frac{\left(x+y\right)^2}{x+y+\frac{\left(x+y\right)^2}{2}}=1\)\("="\Leftrightarrow x=y=1\)
\(VT=\frac{x}{1+y^2}+\frac{y}{1+x^2}=x-\frac{xy^2}{1+y^2}+y-\frac{x^2y}{1+x^2}\)
\(VT\ge x+y-\frac{xy^2}{2y}-\frac{x^2y}{2x}=x+y-xy\ge x+y-\frac{\left(x+y\right)^2}{4}=1\) (đpcm)
Dấu "=" xảy ra khi \(x=y=1\)
Cho x:y:z là các số thực dương thỏa mãn \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2\) và \(x;y;z\ge1\)
CMR:\(\sqrt{x+y+z}\ge\sqrt{x-1}+\sqrt{y-1}\sqrt{z-1}\)
Bài 1 :Cho 2 số dương x,y thỏa mãn điều kiện \(x+y\le1\). Chứng minh\(x^2-\frac{3}{4x}-\frac{x}{y}\le\frac{-9}{4}\)
Bài 2 : Cho 2 số thực x,y thay đổi thỏa mãn điều kiện x+y\(\ge1\)và x>0
Tìm giá trị nhỏ nhất của biểu thức \(M=y^2+\frac{8x^2+y}{4x}\)
bài 3: cho 3 số dương x,y,z thay đổi luôn thỏa mãn điều kiện x+y+z=1. Tìm giá trị lớn nhất của biểu thức:\(P=\dfrac{x}{x+1}+\dfrac{y}{y+1}+\dfrac{z}{z+1}\)
3: \(P=\dfrac{x}{\left(x+y\right)+\left(x+z\right)}+\dfrac{y}{\left(y+z\right)+\left(y+x\right)}+\dfrac{z}{\left(z+x\right)+\left(z+y\right)}\le\dfrac{1}{4}\left(\dfrac{x}{x+y}+\dfrac{x}{x+z}\right)+\dfrac{1}{4}\left(\dfrac{y}{y+z}+\dfrac{y}{y+x}\right)+\dfrac{1}{4}\left(\dfrac{z}{z+x}+\dfrac{z}{z+y}\right)=\dfrac{3}{2}\).
Đẳng thức xảy ra khi x = y = x = \(\dfrac{1}{3}\).
cho x,y là các số thực dương thỏa mãn : x+y=1 CMR \(\frac{x}{1-x^2}+\frac{y}{1-y^2}\ge\frac{4}{3}\)
c1: phân tích từng cái
c2, nhân x cho (1) y cho 2
sau đs dùng bunhia
từ x+y=1
=> x^2-xy+y^2...
\(VT-VP=\frac{\left(3x^2+7xy+3y^2\right)\left(x-y\right)^2}{3\left(1-x^2\right)\left(1-y^2\right)}\ge0\)
Áp dụng giả thiết x + y = 1, ta được:\(\frac{x}{1-x^2}+\frac{y}{1-y^2}=\frac{x}{\left(1+x\right)\left(1-x\right)}+\frac{y}{\left(1+y\right)\left(1-y\right)}=\frac{x}{y\left(1+x\right)}+\frac{y}{x\left(1+y\right)}\)
Theo bất đẳng thức AM - GM:\(\frac{x}{y\left(1+x\right)}+\frac{y}{x\left(1+y\right)}\ge2\sqrt{\frac{x}{y\left(1+x\right)}.\frac{y}{x\left(1+y\right)}}=\frac{2}{\sqrt{xy+x+y+1}}=\frac{2}{\sqrt{xy+2}}\ge\frac{2}{\sqrt{\frac{\left(x+y\right)^2}{4}+2}}=\frac{4}{3}\)Vậy bất đẳng thức được chứng minh
Đẳng thức xảy ra khi x = y = 1/2
cho x,y,z là các số thực dương thỏa mãn xy+yz+xz=xyz(x+y+z)
CMR \(\frac{1}{2x+1}+\frac{1}{2y+1}+\frac{1}{2z+1}\ge1\)
Cho x;y;z là các số dương thỏa mãn \(x^2+y^2+z^2=12\)cmr
\(\frac{1}{\sqrt{x^3+1}}+\frac{1}{\sqrt{y^3+1}}+\frac{1}{\sqrt{z^3+1}}\ge1\)
Tui cũng ko bt, tui đang học lớp 6
tui không biết tôi học lớp 5
cho x;y;z là các số thực dương thỏa mãn x+y+z=1.CMR:
\(\frac{xy}{x^2+y^2}+\frac{yz}{y^2+z^2}+\frac{zx}{z^2+x^2}+\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge\frac{15}{4}\)
vì x+y+z=1nên
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\)\(\frac{x+y+z}{x}+\frac{x+y+z}{y}+\frac{x+y+z}{z}\)\(=3+\left(\frac{x}{y}+\frac{y}{z}\right)+\left(\frac{y}{z}+\frac{z}{y}\right)+\left(\frac{x}{z}+\frac{z}{x}\right)\)=\(3+\frac{x^2+y^2}{xy}+\frac{y^2+z^2}{yz}+\frac{x^2+z^2}{xz}\)
nen \(\frac{xy}{x^2+y^2}+\frac{yz}{y^2+z^2}+\frac{xz}{x^2+z^2}+\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\) =\(\left(\frac{xy}{x^2+y^2}+\frac{x^2+y^2}{4xy}\right)+\left(\frac{yz}{y^2+z^2}+\frac{y^2+z^2}{4yz}\right)+\left(\frac{xz}{x^2+z^2}+\frac{x^2+z^2}{xz}\right)+\frac{3}{4}\)
\(\ge2.\frac{1}{2}+\frac{2.1}{2}+\frac{2.1}{2}+\frac{3}{4}=\frac{15}{4}\)(dpcm)
dau = xay ra khi x=y=z=1/3
Cho các số thực dương x,y,z thỏa mãn: \(x+y\le z\).CMR: \(\left(x^2+y^2+z^2\right).\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\right)\ge\frac{27}{2}\)
\(BDT\Leftrightarrow\text{∑}\left(\frac{x^2}{y^2}+\frac{y^2}{x^2}\right)\ge\frac{21}{2}\)
Mà \(\frac{x^2}{y^2}+\frac{y^2}{x^2}\ge2\)(dùng AM-GM giải quyết chỗ này)
Vậy ta cần chứng minh \(\frac{y^2}{z^2}+\frac{z^2}{y^2}+\frac{z^2}{x^2}+\frac{x^2}{z^2}\ge\frac{17}{2}\)
\(\Leftrightarrow\frac{y^2}{z^2}+\frac{x^2}{z^2}\ge\frac{1}{2}\left(\frac{x}{z}+\frac{y}{z}\right)^2\)
\(\Leftrightarrow\frac{z^2}{y^2}+\frac{z^2}{x^2}\ge\frac{1}{2}\left(\frac{4z}{x+y}\right)^2\)
Đặt \(a=\frac{z}{x+y}\ge1\),ta chứng minh \(\frac{1}{2a^2}+8a^2\ge\frac{17}{2}\)
Dễ thấy BĐT này đúng.Vậy ta có đpcm
Cho Các số thực dương x, y, z thỏa mãn x +y +z=9 (x>1, y>2, Z>3)
Cmr \(\frac{x}{y^2-4y+5}+\frac{y-1}{z^2-6z+10}+\frac{z-2}{x^2-2x+2}\ge3\)