Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ánh Hồng
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 4 2022 lúc 8:11

a: \(P\left(x\right)=5x^5-4x^4-2x^3+4x^2+3x+6\)

Bậc là 5

\(Q\left(x\right)=-5x^5+4x^4+2x^3-4x^2+7x+\dfrac{1}{4}\)

Bậc là 5

b: H(x)=P(x)+Q(x)

\(=5x^5-4x^4-2x^3+4x^2+3x+6-5x^5+4x^4+2x^3-4x^2+7x+\dfrac{1}{4}\)

=10x+6,25

c: Để H(x)=0 thì 10x+6,25=0

hay x=-0,625

Leon Osman
Xem chi tiết
Khánh Mai
9 tháng 1 lúc 21:48

Để thu gọn và sắp xếp các hạng tử của mỗi đa thức, ta cần thực hiện các bước sau:
Đối với đa thức P(x): P(x) = (4x + 1 - x^2 + 2x^3) - (x^4 + 3x - x^3 - 2x^2 - 5) = 4x + 1 - x^2 + 2x^3 - x^4 - 3x + x^3 + 2x^2 + 5 = -x^4 + 3x^3 + x^2 + x + 6
Đối với đa thức Q(x): Q(x) = 3x^4 + 2x^5 - 3x - 5x^4 - x^5 + x + 2x^5 - 1 = 2x^5 - x^5 + 3x^4 - 5x^4 + x - 3x - 1 = x^5 - 2x^4 - 2x - 1
Sau khi thu gọn và sắp xếp các hạng tử, ta có: P(x) = -x^4 + 3x^3 + x^2 + x + 6 Q(x) = x^5 - 2x^4 - 2x - 1

a: \(P\left(x\right)=\left(4x+1-x^2+2x^3\right)-\left(x^4+3x-x^3-2x^2-5\right)\)

\(=4x+1-x^2+2x^3-x^4-3x+x^3+2x^2+5\)

\(=-x^4+3x^3+x^2+x+6\)

\(Q\left(x\right)=3x^4+2x^5-3x-5x^4-x^5+x+2x^5-1\)

\(=\left(2x^5-x^5+2x^5\right)+\left(3x^4-5x^4\right)+\left(-3x+x\right)-1\)

\(=-x^5-2x^4-2x-1\)

b: Bạn ghi lại đề đi bạn

Kudo Shinichi
Xem chi tiết
Nguyễn Lê Phước Thịnh
20 tháng 5 2022 lúc 19:15

a: \(P\left(x\right)=x^5+2x^4-9x^3-x\)

\(Q\left(x\right)=5x^4+9x^3+4x^2-14\)

b: Hệ số cao nhất của P(x) là 1

Hệ số tự do của P(x) là 0

2611
20 tháng 5 2022 lúc 19:16

`a)`

`@P(x)=x^5-2x^2+7x^4-9x^3-x+2x^2-5x^4`

   `P(x)=x^5+(7x^4-5x^4)-9x^3-(2x^2-2x^2)-x`

  `P(x)=x^5+2x^4-9x^3-x`

`@Q(x)=5x^4-x^5+4x^2-6+9x^3-8+x^5`

   `Q(x)=(-x^5+x^5)+5x^4+9x^3+4x^2-(6+8)`

   `Q(x)=5x^4+9x^3+4x^2-14`

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

`b)` Đa thức `P(x)` có:

  `@` Hệ số cao nhất: `1`

  `@` Hệ số tự do: `0`

Kudo Shinichi
Xem chi tiết
TV Cuber
20 tháng 5 2022 lúc 22:10

a)\(P\left(x\right)=x^5+2x^4-9x^3-x\)

\(Q\left(x\right)=5x^4+9x^3+4x^2-14\)

b) Sửa  Tìm hệ số cao nhất và hệ số tự do của đa thức Q(x)

 hệ số cao nhất :9

 hệ số tự do  :- 14

c)\(M\left(x\right)=P\left(x\right)+Q\left(x\right)\)

\(\Leftrightarrow M\left(x\right)=x^5+2x^4-9x^3-x+5x^4+9x^3+4x^2-14\)

\(M\left(x\right)=x^5+6x^4-x-14\)

TV Cuber
20 tháng 5 2022 lúc 22:13

d)\(M\left(2\right)=2^5+6.2^4-2-14=32-96-2-14=-80\)

\(M\left(-2\right)=\left(-2\right)^5+6.\left(-2\right)^4+2-14=-32-96+2-14=-140\)

\(M\left(\dfrac{1}{2}\right)=\left(\dfrac{1}{2}\right)^5+6.\left(\dfrac{1}{2}\right)^4-\dfrac{1}{2}-14=\dfrac{1}{32}+\dfrac{3}{8}-\dfrac{1}{2}-14=-\dfrac{475}{32}\)

Vũ Thùy	Dung
23 tháng 6 2022 lúc 10:15

ảo ma quá đấy bạn eey :)))

tagmin
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 4 2022 lúc 20:09

a: \(P\left(x\right)=-5x^4+2x^2-8x+\dfrac{1}{2}\)

\(Q\left(x\right)=4x^4+2x^3-5x^2-6x+\dfrac{3}{2}\)

b: \(A\left(x\right)=-5x^4+2x^2-8x+\dfrac{1}{2}+4x^4+2x^3-5x^2-6x+\dfrac{3}{2}=-x^4+2x^3-3x^2-14x+2\)

\(B\left(x\right)=-5x^4+2x^2-8x+\dfrac{1}{2}-4x^4-2x^3+5x^2+6x-\dfrac{3}{2}=-9x^4-2x^3+7x^2-2x-1\)

TV Cuber
8 tháng 4 2022 lúc 20:12

a)\(Q\left(x\right)=2x^3+4x^4-6x-5x^2+\dfrac{3}{2}\)

\(P\left(x\right)=2x^2-5x^4-8x+\dfrac{1}{2}\)

TV Cuber
8 tháng 4 2022 lúc 20:13

\(A\left(x\right)=2x^3-x^4-3x^2+2-14x\)

\(B\left(x\right)=-2x^3-9x^4-2x+7x^2-1\)

Ly Hương
Xem chi tiết
Vannie.....
12 tháng 4 2022 lúc 20:11

a) \(M\left(x\right)=-2x^5+5x^2+7x^4-5x+8+2x^5-7x^4-4x^2+6\)

\(=\left(-2x^5+2x^5\right)+\left(7x^4-7x^4\right)+\left(5x^2-4x^2\right)-9x+\left(8+6\right)\)

\(=x^2-9x+14\)

\(N\left(x\right)=7x^7+x^6-5x^3+2x^2-7x^7+5x^3+3\)

\(=\left(7x^7-7x^7\right)+x^6-\left(5x^3-5x^3\right)+2x^2+3\)

\(=x^6+2x^2+3\)

b) Đa thức M(x) có hệ số cao nhất là 1 

                                hệ số tự do là 14

                                bậc 2

 Đa thức N(x) có hệ số cao nhất là 1 

                            hệ số tự do là 3 

                            bậc 6

tth
Xem chi tiết
Nguyễn Ngô Minh Trí
20 tháng 5 2018 lúc 15:51

a)P(x) = x^5 + 7x^4 - 9x^3 - 2x^2 - 1/4x

Q(x) = x^5 + 5x ^ 4 - 2x ^ 3 + 4x^2 - 1/4

b) P(x)+Q(x)

= (x^5 – 2x^2 + 7x^4 – 9x^3 – ¼ x ) + (5x^4 – x^5 + 4x^2 – 2x^3 – 1/4)

= x^5 – 2x^2 + 7x^4 – 9x^3 – ¼ x + 5x^4 – x^5 + 4x^2 – 2x^3 – 1/4

= (x^5 - x^5 ) + ( 7x^4 + 5x^4) + (-2x^3-9x^3) + ( -2x^2 +4x^2) + 1/4x+1/4

= 0 + 12x^4 + -11x^3 + 2x^2 + 1/4x + 1/4

= 12x^4 - 11x^3 + 2x^2 + 1/4x + 1/4

P(x) – Q(x)

= (x^5 – 2x^2 + 7x^4 – 9x^3 – ¼ x ) - (5x^4 – x^5 + 4x^2 – 2x^3 – 1/4)

= x^5 – 2x^2 + 7x^4 – 9x^3 – ¼ x - 5x^4 + x^5 - 4x^2 + 2x^3 + 1/4

=(x^5 + x^5 ) + ( 7x^4 - 5x^4) + (2x^3 - 9x^3) + ( -2x^2 - 4x^2) + 1/4x+1/4

= 2x^5 + 2x^4 + -7x^3 + -6x^2 + 1/4x + 1/4

=2x^5 + 2x^4 - 7x^3 - 6x^2 + 1/4x + 1/4

Nguyễn Ngô Minh Trí
20 tháng 5 2018 lúc 15:32

Tram Nguyen
21 tháng 5 2018 lúc 6:09

Hỏi đáp Toán

Quản gia Whisper
Xem chi tiết
Võ Đông Anh Tuấn
21 tháng 5 2016 lúc 8:04

\(P\left(x\right)=5x^2+3x-4-2x^3+4x^2-6\)

\(P\left(x\right)=\left(5x^2+4x^2\right)+3x+\left(-4-6\right)-2x^3\)

\(P\left(x\right)=9x^2+3x-10-2x^3\)

\(Q\left(x\right)=2x^4-x+3x^2-2x^3+\frac{1}{4}-x^5\)

\(Q\left(x\right)=2x^4-x+3x^2-2x^3+\frac{1}{4}-x^5\)

Sắp giảm :

\(P\left(x\right)=-2x^3+9x^2+3x-10\)

\(Q\left(x\right)=-x^5+2x^4-2x^3+3x^2-x+\frac{1}{4}\)

\(A\left(x\right)=P\left(x\right)+Q\left(x\right)\)

\(A\left(x\right)\)\(\left[\left(-2x^3+9x^2+3x-10\right)-\left(-x^5+2x^4-2x^3+3x^2-x+\frac{1}{4}\right)\right]\)

\(A\left(x\right)=\)\(-2x^3+9x^2+3x-10+x^5-2x^4+2x^3-3x^2+x-\frac{1}{4}\)

\(A\left(x\right)=\)\(\left(-2x^3+2x^3\right)+\left(9x^2-3x^2\right)+\left(3x-x\right)+\left(-10-\frac{1}{4}\right)+x^5-2x^4\)

\(A\left(x\right)=6x^2+2x-2,75+x^5-2x^4\)

Nguyễn Thị Khánh Linh
Xem chi tiết