Cho pt : \(x^2-2\left(m+1\right)x+m^2+2m=0.\) Tìm m để pt có 2no x1, x2 thỏa mãn :x13+x23=8
B1.Tìm các gt của m để pt:
x^2 - 2mx+m-2=0
Có 2no ple x1 x2 thỏa mãn M=\(\frac{2x1x2-\left(x1+x2\right)}{x1^2+x2^2-6x1x2}\)đạt GTNN
B2.Cho pt x^2-4x-m^2+3=0.Tìm m để pt có 2no x1,x2 thỏa mãn x1^2+3x1x2=10x2^2
B3.Tìm các gtrị của k để x^2 -(k-3)x-k+6=0.Có 1no dương duy nhất
B4.Cho pt : x^2+4x-3m+1=0.Tìm m để:
a)Pt có đúng 1no âm
b)Pt có 2no x1<x2<2
1) \(x^2-2mx+m-2=0\) (1)
pt (1) có \(\Delta'=\left(-m\right)^2-\left(m-2\right)=m^2-m+2=\left(m-\frac{1}{2}\right)^2+\frac{7}{4}>0\left(\forall m\right)\)
=> pt luôn có 2 nghiệm phân biệt x1, x2
Vi-et: \(\hept{\begin{cases}x_1+x_2=2m\\x_1x_2=m-2\end{cases}}\)\(\Rightarrow\)\(M=\frac{2x_1x_2-\left(x_1+x_2\right)}{x_1^2+x_2^2-6x_1x_2}=\frac{2x_1x_2-\left(x_1+x_2\right)}{\left(x_1+x_2\right)^2-8x_1x_2}=\frac{2m-4-2m}{\left(2m\right)^2-8m-16}\)
\(=\frac{-4}{4m^2-8m-16}=\frac{-4}{4\left(m-1\right)^2-20}\ge\frac{-4}{-20}=\frac{1}{5}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(m=1\)
xin 1slot sáng giải
Tìm các giá trị của m để phương trình x 2 – 2(m + 1)x + 2m = 0 có hai nghiệm x 1 ; x 2 thỏa mãn x 1 3 + x 2 3 = 8
A. m = 1
B. m = −1
C. m = 0
D. m > −1
Phương trình x2 – 2(m + 1)x + 2m = 0 có a = 1 ≠ 0 và
∆ ' = ( m + 1 ) 2 – 2 m = m 2 + 1 > 0 ; m nên phương trình luôn có hai nghiệm x 1 ; x 2
Theo hệ thức Vi-ét ta có x 1 + x 2 = 2 m + 1 x 1 . x 2 = 2 m
Xét x 1 3 + x 2 3 = 8 ( x 1 + x 2 ) 3 − 3 x 1 . x 2 ( x 1 + x 2 ) = 8
⇔ [ 2 ( m + 1 ) ] 3 – 3 . 2 m . [ 2 ( m + 1 ) ] = 8
8 ( m 3 + 3 m 2 + 3 m + 1 ) – 6 m ( 2 m + 2 ) = 8 ⇔ 8 m 3 + 12 m 2 + 12 m = 0
⇔ m ( 2 m 2 + 3 m + 3 ) = 0
⇔ m = 0 2 m 2 + 3 m + 3 = 0
Phương trình 2 m 2 + 3 m + 3 = 0 c ó ∆ 1 = 3 2 – 4 . 2 . 3 = − 15 < 0 nên phương trình này vô nghiệm
Vậy m = 0 là giá trị cần tìm
Đáp án: C
13) Cho pt x2 - 2x + m +3 =0
a) Tìm để pt có nghiệm x = 3 . Tìm nghiệm còn lại
b) Tìm m để pt có 2 nghiệm phân biệt thỏa mãn x13 + x23 = 8
a: Khi x=3 thì pt sẽ là:
3^2-2*3+m+3=0
=>m-6+9+3=0
=>m+6=0
=>m=-6
x1+x2=2
=>x2=2-3=-1
b:
Δ=(-2)^2-4(m+3)
=4-4m-12
=-4m-8
Để phương trình có hai nghiệm phân biệt thì:
-4m-8>=0
=>m<=-2
x1^3+x2^3=8
=>(x1+x2)^3-3x1x2(x1+x2)=8
=>2^3-3*2(m+3)=8
=>6(m+3)=0
=>m+3=0
=>m=-3(nhận)
cho pt: \(x^2-\left(2m-3\right)x+m^2-3m=0\)
tìm m để pt có 2 nghệm phân biệt x1; x2 thỏa mãn \(1< x_1< x_2< 6\)
PT có 2 nghiệm phân biệt \(\Leftrightarrow\Delta=\left(2m-3\right)^2-4\left(m-3\right)=9>0\)
Vậy PT có 2 nghiệm phân biệt với mọi m
Ta có \(\left[{}\begin{matrix}x_1=\dfrac{2m-3+3}{2}=m\\x_2=\dfrac{2m-3-3}{2}=m-3\end{matrix}\right.\)
Ta thấy \(m>m-3\) nên \(1< m-3< m< 6\Leftrightarrow4< m< 6\)
Vậy \(4< m< 6\) thỏa yêu cầu đề
Bài 1: Cho pt x2 -2mx +2m -1=0
a) chứng tỏ pt luôn có nghiệm với mọi m
b) Goị x1,x2 là 2 nghiệm của pt .Tìm m để (x1 +x2 )2 =x1x2 +7
Bài 2 :Cho pt x2 - 2(m-2)x -8 = 0
a) chứng tỏ pt luôn có 2 nghiệm với mọi m
b) Tìm m để 2 nghiệm x1,x2 của pt thỏa : x13+ x23-4x1 -4x2=0
Bài 2:
a: \(a=1;b=-2\left(m-2\right);c=-8\)
Vì ac<0 nên phương trình luôn có hai nghiệm trái dấu với mọi m
b: Theo Vi-et, ta được: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-2\right)=2m-4\\x_1x_2=-8\end{matrix}\right.\)
Ta có: \(x_1^3+x_2^3-4x_1-4x_2=0\)
\(\Leftrightarrow\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)-4\left(x_1+x_2\right)=0\)
\(\Leftrightarrow\left(2m-4\right)^3-3\cdot\left(2m-4\right)\cdot\left(-8\right)-4\cdot\left(2m-4\right)=0\)
\(\Leftrightarrow\left(2m-4\right)\left[4m^2-16m+16+24-4\right]=0\)
\(\Leftrightarrow\left(2m-4\right)\left(4m^2-16m+36\right)=0\)
\(\Leftrightarrow2m-4=0\)
hay m=2
cho pt: \(x^2\text{-}\left(2m\text{+}1\right)x\text{+}m^2\text{+}m\text{=}0\)
tìm để pt có 2nghiệm x1, x2 thỏa mãn: hai nghiệm lớn hơn 1
\(\text{Δ}=\left(2m+1\right)^2-4\left(m^2+m\right)\)
=4m^2+4m+1-4m^2-4m=1
=>PT luôn có hai nghiệm phân biệt
x1+x2>2 và x1x2>1
=>2m+1>2 và m^2+m>1
=>\(m>\dfrac{-1+\sqrt{5}}{2}\)
B1.Cho pt x^2-4x-m^2+3=0.Tìm m để pt có 2no x1,x2 thỏa mãn x1^2+3x1x2=10x2^2
Cho pt : x^2 -2(m-1)x -3+ 2m=0 Tìm m để pt có 2 nghiệm x1;x2 thỏa mãn x1 bình + x2 -2m =0
cho pt x2+2(m+1)x+2m+2=0 .Tìm m để pt có 2 nghiệm x1;x2 ,thỏa mãn x1^2 +x2^2=8
Để phương trình có 2 nghiệm phân biệt thì \(\Delta>0\)
hay \(\left(2m+2\right)^2-4\left(2m+2\right)=4m^2+8m+4-8m-8=4m^2-4>0\)
\(\Leftrightarrow4m^2>4\Leftrightarrow m^2>1\Leftrightarrow\left(m-1\right)\left(m+1\right)>0\Leftrightarrow\hept{\begin{cases}m>1\\m>-1\end{cases}\Leftrightarrow m>1}\)
Theo Vi et ta có : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=-2m-2\\x_1x_2=\frac{c}{a}=2m+2\end{cases}}\)
mà \(\left(x_1+x_2\right)^2=\left(2m+2\right)^2\Leftrightarrow x_1^2+x_2^2+2x_1x_2=4m^2+8m+4\)
\(\Leftrightarrow x_1^2+x_2^2=4m^2+8m+4-2\left(2m+2\right)=4m^2+8m+4-4m-4=4m^2-4m\)
Lại có : \(x_1^2+x_2^2=8\Rightarrow4m^2-4m-8=0\)
\(\Leftrightarrow4\left(m^2-m-2\right)=0\Leftrightarrow\left(m-2\right)\left(m+1\right)=0\Leftrightarrow\orbr{\begin{cases}m=2\left(chon\right)\\m=-1\left(loai\right)\end{cases}}\)
Để pt có hai nghiệm phân biệt thì Δ' > 0
<=> ( m + 1 )2 - 2m - 2 > 0
<=> m2 + 2m + 1 - 2m - 2 > 0
<=> m2 - 1 > 0 => m > 1 hoặc m < -1
Theo hệ thức Viète ta có : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=-2m-2\\x_1x_2=\frac{c}{a}=2m+2\end{cases}}\)
Khi đó x12 + x22 = 8
<=> ( x1 + x2 )2 - 2x1x2 = 8
<=> 4m2 + 8m + 4 - 4m - 4 - 8 = 0
<=> 4m2 + 4m - 8 = 0
<=> m2 + m - 2 = 0
<=> ( m - 1 )( m + 2 ) = 0
<=> m = 1 ( loại ) hoặc m = -2 (tm)
Vậy ...
Cho PT: \(x^2-\left(3m-1\right)x+2m^2-m=0\). Tìm m để phương trình có 2 nghiệm phân biệt x1, x2 thỏa mãn: \(x_1=x_2^2\)