Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lan Anh Nguyễn
Xem chi tiết
Khôi Bùi
18 tháng 5 2021 lúc 11:03

\(x^4+2x^2+1=\left(x^2+1\right)^2\ge1>0\forall x\) ( đpcm ) 

Trần Ái Linh
18 tháng 5 2021 lúc 11:03

`x^4+2x^2+1`

`=(x^2)^2 + 2.x^2 .1 + 1^2`

`=(x^2+1)^2 > 0 forall x`.

😈tử thần😈
18 tháng 5 2021 lúc 11:04

x4+2x2+1 =(x2+1)2 mà (x2+1)2 ≥ 0 vs mọi x

BHQV
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 11 2023 lúc 20:11

Đặt \(A=\dfrac{x^2+x+1}{-2x^2+2x-2}\)

\(x^2+x+1=x^2+2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>=\dfrac{3}{4}>0\forall x\)

\(-2x^2+2x-2\)

\(=-2\left(x^2-x+1\right)\)

\(=-2\left(x^2-x+\dfrac{1}{4}+\dfrac{3}{4}\right)\)

\(=-2\left[\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\right]\)

\(=-2\left(x-\dfrac{1}{2}\right)^2-\dfrac{3}{2}< =-\dfrac{3}{2}< 0\forall x\)

Do đó: \(A=\dfrac{x^2+x+1}{-2x^2+2x-2}< 0\forall x\)

Toru
11 tháng 11 2023 lúc 20:17

\(\dfrac{x^2+x+1}{-2x^2+2x-2}=\dfrac{x^2+x+1}{-2\left(x^2-x+1\right)}\)

Ta thấy:

\(x^2+x+1\\=x^2+2\cdot x\cdot\dfrac12+\left(\dfrac12\right)^2-\left(\dfrac12\right)^2+1\\=\left(x+\dfrac12\right)^2+\dfrac34\)

Vì \(\left(x+\dfrac{1}{2}\right)^2\ge0\forall x\)

\(\Rightarrow\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\forall x\)

hay \(x^2+x+1>0\forall x\) (1)

Lại có:

\(x^2-x+1\\=x^2-2\cdot x\cdot\dfrac12+\left(\dfrac12\right)^2-\left(\dfrac12\right)^2+1\\=\left(x-\dfrac12\right)^2+\dfrac34\)

Vì \(\left(x-\dfrac{1}{2}\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\forall x\)

hay \(x^2-x+1>0\forall x\) (2)

Từ (1) và (2) \(\Rightarrow\dfrac{x^2+x+1}{x^2-x+1}>0\forall x\)

\(\Rightarrow\dfrac{x^2+x+1}{-2\left(x^2-x+1\right)}< 0\forall x\)

hay đa thức \(\dfrac{x^2+x+1}{-2x^2+2x-2}< 0\forall x\)

\(\text{#}Toru\)

ngtt
Xem chi tiết
Toru
18 tháng 9 2023 lúc 22:52

\(a,P=5x\left(2-x\right)-\left(x+1\right)\left(x+9\right)\)

\(=10x-5x^2-\left(x^2+x+9x+9\right)\)

\(=10x-5x^2-x^2-x-9x-9\)

\(=\left(10x-x-9x\right)+\left(-5x^2-x^2\right)-9\)

\(=-6x^2-9\)

Ta thấy: \(x^2\ge0\forall x\)

\(\Rightarrow-6x^2\le0\forall x\)

\(\Rightarrow-6x^2-9\le-9< 0\forall x\)

hay \(P\) luôn nhận giá trị âm với mọi giá trị của biến \(x\).

\(b,Q=3x^2+x\left(x-4y\right)-2x\left(6-2y\right)+12x+1\)

\(=3x^2+x^2-4xy-12x+4xy+12x+1\)

\(=\left(3x^2+x^2\right)+\left(-4xy+4xy\right)+\left(-12x+12x\right)+1\)

\(=4x^2+1\)

Ta thấy: \(x^2\ge0\forall x\)

\(\Rightarrow4x^2\ge0\forall x\)

\(\Rightarrow4x^2+1\ge1>0\forall x\)

hay \(Q\) luôn nhận giá trị dương với mọi giá trị của biến \(x\) và \(y\).

#\(Toru\)

Doan Nam Phuong Dung
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
11 tháng 9 2020 lúc 22:23

Bài 1.

( 1 - 3x )( x + 2 )

= 1( x + 2 ) - 3x( x + 2 )

= x + 2 - 3x2 - 6x 

= -3x2 - 5x + 2

= -3( x2 + 5/3x + 25/36 ) + 49/12

= -3( x + 5/6 )2 + 49/12 ≤ 49/12 ∀ x

Đẳng thức xảy ra <=> x + 5/6 = 0 => x = -5/6

Vậy GTLN của biểu thức = 49/12 <=> x = -5/6

Bài 2.

A = x2 + 2x + 7

= ( x2 + 2x + 1 ) + 6

= ( x + 1 )2 + 6 ≥ 6 > 0 ∀ x

=> A vô nghiệm ( > 0 mà :)) )

Bài 3.

M = x2 + 2x + 7

= ( x2 + 2x + 1 ) + 6

= ( x + 1 )2 + 6 ≥ 6 > 0 ∀ x

=> đpcm

Bài 4.

A = -x2 + 18x - 81

= -( x2 - 18x + 81 )

= -( x - 9 )2 ≤ 0 ∀ x 

=> đpcm 

Bài 5. ( sửa thành luôn không dương nhé ;-; )

F = -x2 - 4x - 5

= -( x2 + 4x + 4 ) - 1

= -( x + 2 )2 - 1 ≤ -1 < 0 ∀ x

=> đpcm 

Khách vãng lai đã xóa
Xyz OLM
11 tháng 9 2020 lúc 22:25

Bài 2 

Ta có A = x2 + 2x + 7 = (x2 + 2x + 1) + 6 = (x + 1)2 + 6\(\ge\)6 > 0

Đa thức A vô nghiệm

Bại 3: Ta có M = x2 + 2x + 7 = (x2 + 2x + 1) + 6 = (x + 1)2 + 6\(\ge\)6 > 0 (đpcm)

Bài 4 Ta có A = -x2 + 18x - 81 = -(x2 - 18x + 81) = -(x - 9)2 \(\le0\)(đpcm)

Bài 5 Ta có F = -x2 - 4x - 5 = -(x2 + 4x + 5) = -(x2 + 4x + 4) - 1 = -(x + 2)2 - 1 \(\le\)-1 < 0 (đpcm)

Khách vãng lai đã xóa
Anonymous
Xem chi tiết
An Trí Thịnh
27 tháng 4 2022 lúc 8:52

thu gọn rồi chứng minh nó > 0

Lê Thanh Dương
Xem chi tiết
Nguyễn Kiên
14 tháng 6 2017 lúc 15:00

a : x2 + 4x + 7 = (x + 2)2 + 3 > 0

b : 4x2 - 4x + 5 = (2x - 1)2 + 4 > 0

c : x2 + 2y2 + 2xy - 2y + 3 = (x + y)2 + (y - 1)2 + 2 > 0

d : 2x2 - 4x + 10 = 2(x - 1)2 + 8 > 0

e : x2 + x + 1 = (x + 0,5)2 + 0,75 > 0

f : 2x2 - 6x + 5 = 2(x - 1,5)2 + 0,5 > 0

Mike
25 tháng 6 2019 lúc 12:50

a : x2 + 4x + 7 = (x + 2)2 + 3 > 0

b : 4x2 - 4x + 5 = (2x - 1)2 + 4 > 0

c : x2 + 2y2 + 2xy - 2y + 3 = (x + y)2 + (y - 1)2 + 2 > 0

d : 2x2 - 4x + 10 = 2(x - 1)2 + 8 > 0

e : x2 + x + 1 = (x + 0,5)2 + 0,75 > 0

f : 2x2 - 6x + 5 = 2(x - 1,5)2 + 0,5 > 0

Vũ Đức Khải
Xem chi tiết
Nguyễn Huy Tú
19 tháng 7 2021 lúc 10:17

3b : Ta có : \(P=2x\left(x+y-1\right)+y^2+1=2x^2+2xy-2x+y^2+1\)

\(=x^2+2xy+y^2+x^2-2x+1=\left(x+y\right)^2+\left(x-1\right)^2\)

Vậy biểu thức luôn nhận giá trị ko âm với mọi x ; y 

Đỗ Linh Chi
Xem chi tiết
Trịnh Thành Công
5 tháng 12 2016 lúc 11:03

a)2x(2x+7)=4(2x+7)

    2x(2x+7)-4(2x+7)=0

    (2x+7)(2x-4)=0

\(\Rightarrow\orbr{\begin{cases}2x+7=0\\2x-4=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=-\frac{7}{2}\\x=2\end{cases}}\)

Trịnh Thành Công
5 tháng 12 2016 lúc 11:05

b)Ta có:x3-4x2+ax=x3-3x2-x2+ax

                           =x2(x-3)-x(x-a)

          Để x3-4x2+ax chia hết cho x-3 thì a=3

Đỗ Linh Chi
5 tháng 12 2016 lúc 11:13

bạn làm luôn caai c đc không mkk sẽ tích cho bạn 

Đặng Thị Hà Chi
Xem chi tiết
Ngô Bá Hùng
12 tháng 3 2022 lúc 20:50

\(\Leftrightarrow8x^2+5=0\)

do 8x^2 >0; 5>0

\(\Rightarrow8x^2+5>0\forall x\)