Giải hệ phương trình sau:
{15/x - 7/y = 9
{4/x + 9/y = 35
Giải các hệ phương trình sau:
a.{1/x - 1/y = 1
{2/x - 3/y = 5
b.{15/x - 7/y = 9
{4/x + 9/y = 35
\(a,\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{x}-\dfrac{2}{y}=2\\\dfrac{2}{x}-\dfrac{3}{y}=5\end{matrix}\right.\left(x,y\ne0\right)\Leftrightarrow\left\{{}\begin{matrix}-\dfrac{5}{y}=3\\\dfrac{2}{x}-\dfrac{3}{y}=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{5}{3}\\\dfrac{2}{x}+\dfrac{9}{5}=5\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{8}\\y=-\dfrac{5}{3}\end{matrix}\right.\)
\(b,\Leftrightarrow\left\{{}\begin{matrix}\dfrac{60}{x}-\dfrac{28}{y}=36\\\dfrac{60}{x}-\dfrac{135}{y}=525\end{matrix}\right.\left(x,y\ne0\right)\Leftrightarrow\left\{{}\begin{matrix}\dfrac{4}{x}+\dfrac{9}{y}=35\\-\dfrac{163}{y}=489\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{4}{x}-27=35\\y=-\dfrac{1}{3}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{31}\\y=-\dfrac{1}{3}\end{matrix}\right.\)
a: Ta có: \(\left\{{}\begin{matrix}\dfrac{1}{x}-\dfrac{1}{y}=1\\\dfrac{2}{x}-\dfrac{3}{y}=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{x}-\dfrac{2}{y}=2\\\dfrac{2}{x}-\dfrac{3}{y}=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{y}=-3\\\dfrac{1}{x}-\dfrac{1}{y}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{-1}{3}\\\dfrac{1}{x}=1+\dfrac{1}{y}=1+\left(-3\right)=-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{1}{3}\\x=\dfrac{-1}{2}\end{matrix}\right.\)
Giải các hệ phương trình sau a) (x - 3)(2y + 5) = (2x + 7)( y- 1) (4x + 1)(3y - 6) = (6x - 1)(2y + 3) b) 15/x - 7/y = 9 4/x + 9/y = 35
Mọi người giúp mình giải hệ phương trình này bằng một cách dễ hiểu nhất với!Cảm ơn!
\(\begin{cases} \dfrac{5}{y}-\dfrac{7}{y}=9\\ \dfrac{4}{x}-\dfrac{9}{y}=35 \end{cases} \)
\(\left\{{}\begin{matrix}\dfrac{5}{y}-\dfrac{7}{y}=9\\\dfrac{4}{x}-\dfrac{9}{y}=35\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{-2}{y}=9\\\dfrac{4}{x}-\dfrac{9}{y}=35\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{2}{9}\\\dfrac{4}{x}-\dfrac{9}{-\dfrac{2}{9}}=35\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{2}{9}\\\dfrac{4}{x}=-\dfrac{11}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{2}{9}\\x=-\dfrac{8}{11}\end{matrix}\right.\)
Vậy....
Ta có: \(\left\{{}\begin{matrix}\dfrac{5}{x}-\dfrac{7}{y}=9\\\dfrac{4}{x}-\dfrac{9}{y}=35\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{20}{x}-\dfrac{28}{y}=36\\\dfrac{20}{x}-\dfrac{45}{y}=175\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{17}{y}=-139\\\dfrac{4}{x}-\dfrac{9}{y}=35\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{-17}{139}\\\dfrac{4}{x}=-\dfrac{656}{17}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{17}{139}\\x=-\dfrac{17}{164}\end{matrix}\right.\)
Giải hệ pt: \(\left\{{}\begin{matrix}\frac{15}{x}-\frac{7}{y}=9\\\frac{4}{x}+\frac{9}{y}=35\end{matrix}\right.\)
Đặt \(\frac{1}{x}=a,\frac{1}{y}=b\)
Ta có hệ phương trình:
\(\left\{{}\begin{matrix}15a-7b=9\\4a+9b=35\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}60a-28b=36\\60a+135b=525\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-163b=-489\\4a+9b=35\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=3\\4a+9.3=35\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b=3\\4a=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=3\\a=2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{1}{x}=2\\\frac{1}{y}=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\frac{1}{2}\\y=\frac{1}{3}\end{matrix}\right.\)
Vậy hệ phương trình có nghiệm duy nhất là (x;y) = (\(\frac{1}{2};\frac{1}{3}\))
giải hệ phương trình sau : {√(1-x^3)-√(y√y+1)-√y=x , (4x+3)(√(4-√y)+ (√(3x+8))^3-1)=9 }
bài 1: giải các phương trình sau :
a) x^3-5x=0 b) căn bậc 2 của x-1=3
bài 2 :
cho hệ phương trình : {2x+my;3x-y=0 (I)
a) giải hệ phương trình khi m=0
b) tìm giá trị của m để hệ (I) có nghiệm (x;y) thỏa mãn hệ thức :
x-y+m+1/m-2=-4
bài 3:giải các phương trình sau
a)5x-2/3=5x-3/2 b) 10x+3/12=1+6x+8/9 c) 2(x+3/5)=5-(13/5+x) d) 7/8x-5(x-9)=20x+1,5/6
Giải hệ phương trình sau
\(x^2+6y=6x\)
\(y^2+9=2xy\)
giải hệ phương trình sau
x +xy + y = 1
y + yz+ z = 4
z + zx + x = 9
\(\left(x+1\right)\left(y+1\right)=2;\text{ }\left(y+1\right)\left(z+1\right)=5;\text{ }\left(z+1\right)\left(x+1\right)=10\)
\(x+1=a;\text{ }y+1=b;\text{ }z+1=c\)
\(\rightarrow ab=2;\text{ }bc=5;\text{ }ca=10\Rightarrow\left(abc\right)^2=100\Rightarrow abc=\pm10\)
\(+abc=10:\text{ }c=\frac{abc}{ab}=\frac{10}{2}=5\), tương tự với a, b
\(+abc=-10\) tương tự trên.
bài 1
a)x^2=(6-6)*x*y
x^2 = 0*x*y
x^2 =0
x = 0
a) x2=(6-6)*x*y
x2=0*x*y
x2=0
x=0
Vậy x=0
Còn câu b mình chưa làm được
AI K MÌNH MÌNH K LẠI
Giải các hệ phương trình sau:
{ (x - 5)(y - 2) = (x + 2)(y - 1)
{ (x - 4)(y + 7) = (x - 3)(y + 4)
\(\left\{{}\begin{matrix}\left(x-5\right)\left(y-2\right)=\left(x+2\right)\left(y-1\right)\\\left(x-4\right)\left(y+7\right)=\left(x-3\right)\left(y+4\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}xy-2x-5y+10=xy-x+2y-2\\xy+7x-4y-28=xy+4x-3y-12\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+7y=12\\3x-y=16\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}3x+21y=36\\3x-y=16\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}22y=20\\x+7y=12\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{62}{11}\\y=\dfrac{10}{11}\end{matrix}\right.\)