chứng minh đa thức sau không có nghiệm:
\(\left(x+2\right)^4+x^2+11\)
Chứng tỏ đa thức: \(M\left(x\right)=x^4+\frac{11}{2}.x^2+x+6\) không có nghiệm.
mọi người giúp mình với huhu... lm giúp mình theo cách lớp 7 nhé T.T hoặc nói hướng làm thôi cũng đc =))))
Chứng tỏ đa thức: \(M\left(x\right)=x^4+\frac{11}{2}.x^2+x+6\) không có nghiệm.
\(x^4+\left(\sqrt{\frac{11}{2}}.x\right)^2+2.\sqrt{\frac{11}{2}}.x.\sqrt{\frac{8}{11}}+\frac{8}{11}+5\frac{3}{11}>0\)
Chứng minh đa thức sau vô nghiệm:
\(\left(x-4\right)^2+\left(x+5\right)^2\)
\(\left(x-4\right)^2+\left(x+5\right)^2\)
Nếu đa thức trên có nghiệm là n
\(\Leftrightarrow\left(n-4\right)^2+\left(n+5\right)^2=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}\left(n-4\right)^2=0\\\left(n+5\right)^2=0\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}n-4=0\\n+5=0\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}n=4\\n=-5\end{array}\right.\) vô lí
Vậy đa thức trên không có nghiệm
Chứng minh rằng đa thức sau không có nghiệm trên tập hợp R:
a) \(G\left(y\right)=-y^2-4y-4\)
b) \(H\left(x\right)=\left|x+3\right|+\left|5-x\right|+7\)
a,ta có \(G\left(y\right)=-\left(y+2\right)^2\)
có nghiệm là -2
b,ta có:
Câu a làm giống bạn kia đc rồi
b, Dễ thấy H(x) > 0 nên pt éo có nghiệm =((
Lục đục nãy giờ mới thấy :/
Cho đa thức \(Q\left(x\right)=-3x^4+4x^3+2x^2+\dfrac{2}{3}-3x-2x^4-4x^3+8x^4+1+3x\)
Chứng tỏ đa thức \(Q\left(x\right)\) không có nghiệm.
\(Q\left(x\right)=-3x^4+4x^3+2x^2+\dfrac{2}{3}-3x-2x^4-4x^3+8x^4+1+3x\)
\(=\left(-3x^4-2x^4+8x^4\right)+\left(4x^3-4x^3\right)+2x^2-\left(3x-3x\right)+\left(1+\dfrac{2}{3}\right)\)
\(=3x^4+2x^2+\dfrac{5}{3}\)
\(3x^4+2x^2+\dfrac{5}{3}=0\)
\(\Rightarrow3x^4+2x^2=-\dfrac{5}{3}\)(Vô lí vì \(3x^4\) và \(2x^2\) luôn lớn hơn hoặc bằng 0)
Vậy Q(x) không có nghiệm
Q(x)=3x^4+2x^2+5/3>=5/3>0 với mọi x
=>Q(x) vô nghiệm
Cho hai đa thức :
\(P\left(x\right)=-2x^2+3x^4+x^3+x^2-\dfrac{1}{4}x\\ Q\left(x\right)=x^4+3x^2-4-4x^3-2x^2\)
Chứng tỏ x=0 là nghiệm của đa thức P(x), nhưng không phải là nghiệm của đa thức Q(x)
\(P\left(0\right)=3.0^4+0^3-0^2+\dfrac{1}{4}.0=0+0-0+0=0\)
\(Q\left(0\right)=0^4-4.0^3+0^2-4=0-0+0-4=-4\)
vậy Chứng tỏ x=0 là nghiệm của đa thức P(x), nhưng không phải là nghiệm của đa thức Q(x)
thu gọn
\(P\left(x\right)=3x^4+x^3\left(-2x^2+x^2\right)+\dfrac{1}{4}x=3x^4+x^3-x^2+\dfrac{1}{4}x\)
\(Q\left(x\right)=x^4-4x^3+\left(3x^2-2x^2\right)-4=x^4-4x^3+x^2-4\)
Lời giải:
Ta thấy:
$P(0)=-2.0^2+3.0^4+0^3+0^2-\frac{1}{4}.0=0$ nên $x=0$ là nghiệm của $P(x)$
$Q(0)=0^4+3.0^2-4-4.0^3-2.0^2=-4\neq 0$
Do đó $x=0$ không phải nghiệm của $Q(x)$
Cho đa thức P(x) thỏa mãn điều kiện:\(\left(x-5\right)P\left(x+4\right)=\left(x+3\right)P\left(x\right)\) chứng minh rằng đa thức có ít nhất 2 nghiệm.
Thay x = -3 thì 1 là nghiệm của P(x)
Thay x = 5 thì 5 là nghiệm của P(x)
Vậy P(x) có ít nhất 2 nghiệm là 1 và 5.
Chúc bạn học tốt.
Chứng minh đa thức \(A\left(x\right)=x^4+3x^2+1\) không có nghiệm với mọi giá trị của x
Ta có \(x^4\ge0\) ( lũy thừa bậc chẵn)
\(3x^2\ge0\) ( vì x2 là lũy thừa bậc chẵn nên lớn hơn 0 )
=> A(x) > 0
Vậy đa thức A(x) ko có nghiệm
Ta có : \(x^4>=0\);\(3x^2>=0\); \(1>0\)
=> \(x^4+3x^2+1>0\)
=> PTVN
A(x)=x4 + 3x2 +1
Vì x4 \(\ge\)0 ; x2 \(\ge\)0 ->3x^2 \(\ge\)0 -> x^4 +3x^2+1\(\ge\)1 -> A(x) không có nghiệm với mọi giá trị x
Biết rằng \(\left(x^2-4\right)P\left(x+1\right)=\left(x^2-3\right)P\left(x\right)\))
Chứng minh đa thức P (x) có ít nhất 4 nghiệm.
Với \(x=\sqrt{4}\)ta có :
\(\left(x^2-4\right)P\left(\sqrt{4}+1\right)=\left(x^2-3\right)P\left(\sqrt{4}\right)\)
\(\Rightarrow\left(4-4\right)P\left(\sqrt{4}+1\right)=\left(4-3\right)P\left(\sqrt{4}\right)\)
\(\Rightarrow0.P\left(\sqrt{4}+1\right)=P\left(\sqrt{4}\right)\Rightarrow P\left(\sqrt{4}\right)=0\)
Vậy \(\sqrt{4}\)là 1 nghiệm của P(x)
Với \(x=\sqrt{3}\)
\(\Rightarrow\left(3-4\right)P\left(\sqrt{3}+1\right)=\left(3-3\right)P\left(\sqrt{3}\right)\)
\(\Rightarrow-P\left(\sqrt{3}+1\right)=0\)
\(\Rightarrow P\left(\sqrt{3}+1\right)=0\)
Vậy............
Tự làm tiếp nha
vì (x2-4)P(x+1) = (x2-3)P(x) với mọi x nên :
- khi x2=4 => +) x=2 thì 0.P (x+1)=1.P(x) =>P(x) = 0. vậy x=2 là 1 nghiệm của f(x)
+) x=-2 thì 0.P (x+1)=1.P(x) =>P(x) = 0. vậy x=-2 là 1 nghiệm của f(x)
- khi x2=3 => +) x=\(\sqrt{3}\) thì 5.P (x+1)=0.P(x) =>P(x+1) = 0. vậy x=\(\sqrt{3}\) là 1 nghiệm của f(x)
+) x= \(-\sqrt{3}\) thì 5.P (x+1)=0.P(x) =>P(x+1) = 0. vậy x=\(\sqrt{3}\) là 1 nghiệm của f(x)
Do đó f(x) có ít nhất 4 nghiệm là: 2; -2; \(-\sqrt{3}\); \(\sqrt{3}\)