\(\sqrt{19+\sqrt{136}}-\sqrt{19-\sqrt{136}}\)
Câu 1: Rút gọn biểu thức:
a) \(\sqrt{19+\sqrt{136}}-\sqrt{19-\sqrt{136}}\)
b) \(\sqrt{27}+\sqrt{-64}+2\sqrt{125}\)
Câu 2: Tìm x biết:
\(\sqrt{4x+20}-2\sqrt{x+5}+\sqrt{9x+45}=6\)
a) \(\sqrt{19+\sqrt{136}}\) -\(\sqrt{19-\sqrt{136}}\)
= \(\sqrt{19+2\sqrt{34}}\) - \(\sqrt{19-2\sqrt{34}}\)
= \(\sqrt{\left(\sqrt{17}+\sqrt{2}\right)^2}\) - \(\sqrt{\left(\sqrt{17}-\sqrt{2}\right)^2}\)
= \(\left|\sqrt{17}+\sqrt{2}\right|-\left|\sqrt{17}-\sqrt{2}\right|\)
= \(\sqrt{17}+\sqrt{2}-\sqrt{17}+\sqrt{2}\)
= \(2\sqrt{2}\)
đơn giản hóa biểu thức : S= (1 + 2sqrt(2))/(1 + sqrt(2)) + (sqrt(2) + sqrt(3) + sqrt(6))/(3(sqrt(2) + sqrt(3))) + 2+3 sqrt 3 6(2+ sqrt 3) +\ + 4+5 sqrt 17 136(4+ sqrt 17) .
Công thức viết khó đọc quá. Bạn nên viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để được hỗ trợ tốt hơn.
\(\sqrt{5+\sqrt{19+2\sqrt{5}}}\) - \(\sqrt{5-\sqrt{19+2\sqrt{5}}}\)
Đặt \(x=\sqrt{5+\sqrt{19+2\sqrt{5}}}-\sqrt{5-\sqrt{19+2\sqrt{5}}}>0\)
\(x^2=10-2\sqrt{\left(5+\sqrt{19+2\sqrt{5}}\right)\left(5-\sqrt{19+2\sqrt{5}}\right)}\)
\(x^2=10-2\sqrt{6-2\sqrt{5}}\)
\(x^2=10-2\sqrt{\left(\sqrt{5}-1\right)^2}\)
\(x^2=10-2\sqrt{5}+2\)
\(x^2=12-2\sqrt{5}\)
\(\Rightarrow x=\sqrt{12-2\sqrt{5}}\)
Tính D= |sqrt(8)-3|+|sqrt(19)-4|-(sqrt(19)-sqrt(8))
\(D=\left|\sqrt{8}-3\right|+\left|\sqrt{19}-4\right|-\left(\sqrt{19}-\sqrt{8}\right)\)
\(D=\left(3-2\sqrt{2}\right)+\sqrt{19}-4-\left(\sqrt{19}-\sqrt{8}\right)\)
\(D=\left(3-2\sqrt{2}\right)+\sqrt{19}-4-\left(\sqrt{19}-2\sqrt{2}\right)\)
\(D=-2\sqrt{2}+3+\sqrt{19}-4-\left(\sqrt{19}-2\sqrt{2}\right)\)
\(D=-2\sqrt{2}+3+\sqrt{19}-4-\sqrt{19}+2\sqrt{2}\)
\(D=-2\sqrt{2}+3-4+2\sqrt{2}\)
\(D=3-4\)
\(D=-1\)
\(\sqrt{10-\sqrt{19}}-\sqrt{10+\sqrt{19}}\)
\(\left(\sqrt{3}+4\right)\sqrt{19-8\sqrt{3}}+\left(\sqrt{3}-4\right)\sqrt{19+8\sqrt{3}}\)
\(=\left(\sqrt{3}+4\right)\sqrt{\left(4-\sqrt{3}\right)^2}+\left(\sqrt{3}-4\right)\sqrt{\left(4+\sqrt{3}\right)^2}=\left(\sqrt{3}+4\right)\left(4-\sqrt{3}\right)+\left(\sqrt{3}-4\right)\left(4+\sqrt{3}\right)\)
\(=16-3+3-16=0\)
rút gọn
A=\(\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+........+\frac{1}{\sqrt{19}+\sqrt{20}}\)
B=\(\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+......+\frac{1}{20\sqrt{19}+19\sqrt{20}}\)
\(\left(\sqrt{\left(\sqrt{20}\right)-\sqrt{19}}\right)^x+\left(\sqrt{\left(\sqrt{20}\right)+\sqrt{19}}\right)^x=2\)
Lời giải:
Đặt \(\sqrt{\sqrt{20}+\sqrt{19}}=a\)
Ta thấy:
\(\sqrt{\sqrt{20}+\sqrt{19}}.\sqrt{\sqrt{20}-\sqrt{19}}=\sqrt{(\sqrt{20}-\sqrt{19})(\sqrt{20}+\sqrt{19})}=\sqrt{20-19}=1\)
\(\Rightarrow \sqrt{\sqrt{20}-\sqrt{19}}=\frac{1}{\sqrt{\sqrt{20}+\sqrt{19}}}=\frac{1}{a}\)
PT trở thành:
\(a^x+\frac{1}{a^x}=2\)
\(\Leftrightarrow a^{2x}+1-2a^{x}=0\)
\(\Leftrightarrow (a^x-1)^2=0\Rightarrow a^x=1\)
Mà \(a\neq 1\) nên \(\Rightarrow x=0\)
40.A=\(\dfrac{2-5\sqrt{x}}{\sqrt{x}+1}\)
a. Tính giá trị của biểu thức A khi x=\(\sqrt{19+8\sqrt{3}}+\sqrt{19-8\sqrt{3}}\)
a: \(x=4+\sqrt{3}+4-\sqrt{3}=8\)
Khi x=8 thì \(A=\dfrac{2-5\cdot2\sqrt{2}}{2\sqrt{2}+1}=\dfrac{2-10\sqrt{2}}{2\sqrt{2}+1}=-6+2\sqrt{2}\)