tìm ước chung lớn nhất của 2 số
A = \(5^{16}-4\times\left(5+1\right)\times\left(5^2+1\right)\times\left(5^4+1\right)\times\left(5^8+1\right)\) VÀ 2005
Tìm x \(\frac{2}{\left(x-1\right)\times\left(x-3\right)}+\frac{5}{\left(x-3\right)\times\left(x-8\right)}+\frac{12}{\left(x-8\right)\times\left(x-20\right)}-\frac{1}{x-20}=-\frac{3}{4}\)-3/4
Thu gọn:
a) \(\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\times...\times\left(2^{32}+1\right)-2^{64}\)
b) \(\left(5+3\right)\left(5^2+3^2\right)\left(5^4+3^4\right)\times...\times\left(5^{64}+3^{64}\right)+\dfrac{5^{128}-3^{128}}{2}\)
CÁC BẠN GIÚP MIK VS NHÉ !!!!! ĐAG CẦN GẤP
a, \(A=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)...\left(2^{32}+1\right)-2^{64}\)
\(=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)...\left(2^{32}+1\right)-2^{64}\)
\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)...\left(2^{32}+1\right)-2^{64}\)
\(=\left(2^{32}-1\right)\left(2^{32}+1\right)-2^{64}=2^{64}-1-2^{64}=-1\)
b,\(B=\left(5+3\right)\left(5^2+3^2\right)\left(5^4+3^4\right)...\left(5^{64}+3^{64}\right)+\dfrac{5^{128}-3^{128}}{2}\)
\(=\dfrac{\left(5-3\right)\left(5+3\right)\left(5^2+3^2\right)\left(5^4+3^4\right)...\left(5^{64}+3^{64}\right)}{2}+\dfrac{5^{128}-3^{128}}{2}\)\(=\dfrac{\left(5^2-3^2\right)\left(5^2+3^2\right)\left(5^4+3^4\right)...\left(5^{64}+3^{64}\right)+5^{128}-3^{128}}{2}\)
\(=\dfrac{\left(5^{64}-3^{64}\right)\left(5^{64}+3^{64}\right)+5^{128}-3^{128}}{2}=\dfrac{2.5^{128}}{2}=5^{128}\)
>; <; =?
a) \(\dfrac{2}{3}\times\dfrac{4}{5}\) \(\dfrac{4}{5}\times\dfrac{2}{3}\)
b) \(\left(\dfrac{1}{3}\times\dfrac{2}{5}\right)\times\dfrac{3}{4}\) \(\dfrac{1}{3}\times\left(\dfrac{2}{5}\times\dfrac{3}{4}\right)\)
c) \(\left(\dfrac{1}{3}+\dfrac{2}{15}\right)\times\dfrac{3}{4}\) \(\dfrac{1}{3}\times\dfrac{3}{4}+\dfrac{2}{15}\times\dfrac{3}{4}\)
a) \(\dfrac{2}{3}\times\dfrac{4}{5}=\dfrac{4}{5}\times\dfrac{2}{3}\)
b) \(\left(\dfrac{1}{3}\times\dfrac{2}{5}\right)\times\dfrac{3}{4}=\dfrac{1}{3}\times\left(\dfrac{2}{5}\times\dfrac{3}{4}\right)\)
c) \(\left(\dfrac{1}{3}-\dfrac{2}{15}\right)\times\dfrac{3}{4}=\dfrac{1}{3}\times\dfrac{3}{4}+\dfrac{2}{15}\times\dfrac{3}{4}\)
\(4\times\left(\frac{1}{4}\right)^2+25\times\left[\left(\frac{3}{4}\right)^3\div\left(\frac{5}{4}\right)^3\right]\div\left(\frac{3}{2}\right)^3\)
\(2^3+3\times\left(\frac{1}{2}\right)^0-1+\left[\left(-2\right)^2\div\frac{1}{2}\right]-8\)
\(4.\left(\frac{1}{4}\right)^2+25\left[\left(\frac{3}{4}\right)^3:\left(\frac{5}{4}\right)^3\right]:\left(\frac{3}{2}\right)^3=4.\frac{1}{16}+25\left(\frac{27}{64}.\frac{64}{125}\right).\frac{8}{27}\)
\(=\frac{1}{4}+25.\frac{27}{125}.\frac{8}{27}=\frac{1}{4}+\frac{8}{5}=\frac{37}{20}\)
\(2^3+3\left(\frac{1}{2}\right)^0-1+\left[\left(-2\right)^2:\frac{1}{2}\right]-8=8+3-1+4.2-8=10\)
tính giá trị biểu thức
a, A=\(\frac{-1}{2}-\left[\frac{-3}{5}\right]+\left[\frac{-1}{9}\right]+\frac{1}{27}+\frac{7}{18}+\frac{4}{35}-\left[-\frac{2}{7}\right]\)
b, B=\(\frac{1}{3}-\frac{3}{4}-\left[\frac{-3}{5}-\frac{1}{57}+\frac{1}{36}+\frac{-1}{15}\right]-\frac{2}{9}\)
c, C=\(\left[-\frac{7}{15}\right]\times\frac{5}{8}\times\left[\frac{30}{-7}\right]\times\left[-16\right]\times\left[\frac{-1}{1000}\right]\)
d, D=\(\frac{1}{2}\times\frac{-11}{19}-50\%\times\left[-\frac{1}{19}\right]+\frac{10}{19}\times\frac{1111}{2222}\)
tính giá trị biểu thức chứ còn cái gì nữa
a, \(A=\frac{22}{27}\)
b,\(B=\frac{1}{57}\)
C,\(C=\frac{1}{50}\)
d, \(D=0\)
1) Rút gọn biểu thức M:
\(\frac{\frac{2}{5}+\frac{2}{7}-\frac{2}{9}-\frac{2}{11}}{\frac{4}{5}+\frac{4}{7}-\frac{4}{9}-\frac{2}{11}}\)
2) Tính nhanh:
\(A=\left(1-\frac{1}{2}\right)\times\left(1-\frac{1}{3}\right)\times\left(1-\frac{1}{4}\right)\times\left(1-\frac{1}{5}\right)\times....\times\left(1-\frac{1}{100}\right)\)
1, =\(\frac{2\left(\frac{1}{5}+\frac{1}{7}-\frac{1}{9}-\frac{1}{11}\right)}{4\left(\frac{1}{5}+\frac{1}{7}-\frac{1}{9}-\frac{1}{11}\right)}=\frac{1}{2}\)
2, A=\(\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot...\cdot\frac{99}{100}\)
= \(\frac{1\cdot2\cdot3\cdot....\cdot99}{2\cdot3\cdot4\cdot...\cdot100}=\frac{1}{100}\)
Vậy ......
hok tốt
Tính nhanh:
\(\left(1-\frac{1}{2}\right)\times\left(1-\frac{1}{3}\right)\times\left(1-\frac{1}{4}\right)\times\left(1-\frac{1}{5}\right)\times.......\times\left(1-\frac{1}{2003}\right)\times\left(1-\frac{1}{2004}\right)\)
\(=\frac{1}{2}\times\frac{2}{3}\times....\times\frac{2003}{2004}\)
\(=\frac{1\times2\times3\times...\times2003}{2\times3\times4\times...\times2014}\)
\(=\frac{1}{2014}\)
Tính : \(A=\left(2+1\right)\times\left(2^2+1\right)\times\left(2^4+1\right)\times\left(2^8+1\right)\times\left(2^{16}+1\right)\times\left(2^{32}+1\right)\)
\(A=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)...\left(2^{32}+1\right)\)
\(=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)...\left(2^{32}+1\right)\)
\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)...\left(2^{32}+1\right)\)
\(=\left(2^4-1\right)...\left(2^{32}+1\right)\)
..............................................................
\(=2^{64}-1\)
Tính giá trị biểu thức
\(a=\left(4+\frac{1}{5}\right)\times\frac{18}{19}+\left(2+\frac{8}{5}\right)\times\frac{21}{5}\)
\(b=\frac{25}{2}\times\left(3+\frac{2}{7}\right)-\frac{23}{7}\times\left(5+\frac{1}{2}\right)\)
A = (4+\(\frac{1}{5}\)) . \(\frac{18}{19}\)+ (2+\(\frac{8}{5}\)) . \(\frac{21}{5}\)
A= \(\frac{21}{5}\).18/19 + 18/5 . 21/5
A= 21/5 (18/19 + 18/5)
A= 21/5 . 432/95
A= 9288/95
b= 25/2. (3+2/7) - 23/7. (5 + 1/2)
b= 25/2 . 23/7 - 23/7 . 11/2
b= 23/7 (25/2 -11/2)
b=23/7 . 7
b= 23