Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thảo Vi
Xem chi tiết
Etermintrude💫
8 tháng 3 2021 lúc 20:42

undefinedundefinedundefined

Hoàng Khánh Chi
Xem chi tiết
Akai Haruma
11 tháng 2 lúc 0:22

Lời giải;

Vế 1:

Áp dụng BĐT AM-GM:

$2=(x^2+y^2)(1+1)\geq (x+y)^2\Rightarrow x+y\leq \sqrt{2}$

$x^3+\frac{x}{2}\geq \sqrt{2}x^2$

$y^3+\frac{y}{2}\geq \sqrt{2}y^2$

$\Rightarrow x^3+y^3+\frac{x+y}{2}\geq \sqrt{2}(x^2+y^2)=\sqrt{2}$

$\Rightarrow x^3+y^3\geq \sqrt{2}-\frac{x+y}{2}\geq \sqrt{2}-\frac{\sqrt{2}}{2}=\frac{1}{\sqrt{2}}$

-----------------------

Vế 2:

$x^2+y^2=1$

$\Rightarrow x^2=1-y^2\leq 1\Rightarrow -1\leq x\leq 1$

$y^2=1-x^2\leq 1\Rightarrow -1\leq y\leq 1$

$\Rightarrow x^3\leq x^2; y^3\leq y^2$

$\Rightarrow x^3+y^3\leq x^2+y^2$ hay $x^3+y^3\leq 1$

phan thị minh anh
Xem chi tiết
Hoàng Lê Bảo Ngọc
12 tháng 8 2016 lúc 16:24

Giả sử : \(y=ax\) 

Thay vào giả thiết : \(\frac{ax}{x+ax}+\frac{2\left(ax\right)^2}{x^2+\left(ax\right)^2}+\frac{4\left(ax\right)^4}{x^4+\left(ax\right)^4}+\frac{8\left(ax\right)^8}{x^8-\left(ax\right)^8}=4\)

\(\Leftrightarrow\frac{x.a}{x.\left(a+1\right)}+\frac{x^2.2a^2}{x^2\left(1+a^2\right)}+\frac{x^4.4a^4}{x^4\left(1+a^4\right)}+\frac{x^8.8a^8}{x^8\left(1-a^8\right)}=4\)

\(\Leftrightarrow\frac{a}{a+1}+\frac{2a^2}{a^2+1}+\frac{4a^4}{a^4+1}+\frac{8a^8}{1-a^8}=4\)

Tới đây bạn giải ra , tìm a rồi thay vào y = ax  là ra :)

White Boy
Xem chi tiết
Ngocmai
Xem chi tiết
Xem chi tiết
Nguyễn Việt Lâm
21 tháng 2 2021 lúc 16:58

Ta có: \(\dfrac{x}{x^2+1}-\dfrac{1}{2}=\dfrac{-\left(x-1\right)^2}{x^2+1}\le0\)

\(\Rightarrow\dfrac{x}{x^2+1}\le\dfrac{1}{2}\) ;\(\forall x\)

Mặt khác: \(y^2-4y+5=\left(y-2\right)^2+1\ge1\)

\(\Rightarrow y^2-4y+5>\dfrac{x}{x^2+1}\) ; \(\forall x;y\)

\(\Rightarrow\) Không tồn tại x, y thỏa mãn yêu cầu đề bài

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
23 tháng 10 2019 lúc 7:18

Đáp án D

Mai Trọng Gia Long
19 tháng 3 2021 lúc 23:06

Toán lớp 0 ?????  \(\text{ 🤔 }\text{ 🤔 }\text{ 🤔 }\text{ 😅 }\text{ 😅 }\text{ 😅 }\)

Khách vãng lai đã xóa
Quỳnh Nguyễn Thị Ngọc
Xem chi tiết
Tiểu Thiên Hạc
Xem chi tiết