1. cho △ABC vuông ở C . có góc A = 60 độ . tip phân giác của góc BAC . cắt BC ở E. kẻ EK ⊥AB ( K∈AB) . kẻ BD ⊥AE ( D∈AE) . chứng minh rằng
a. △ACE = △AKE
b. AE là trung trực của CK
c. EB> AC
d. KA=KB
Cho tam giác ABC vuông ở C có A = 60 độ tia phân giác của BAC cắt BC ở E kẻ EK vuông góc AB (K € AB) kẻ BD vuông góc AE (D € AE). Chứng minh a) AC = AK , AE vuông góc CK b) Chứng minh KA = KH BT c) EB > AC
cho tam giác ABC vuông ở C có góc A =60 độ. tia phân giác của góc BAC cắt BC ở E. kẻ EK vuông góc với AB (K thuộc AB). kẻ BD vuông góc với tia AE (D thuộc AE). chứng minh:
a) AC=AK
b) AE là đường trung trực của đoạn thẳng CK
c) KA=KB
d) AC<EB
Em tham khảo câu a, b, c tại đây nhé.
Câu hỏi của Bảo Trân Nguyễn Hoàng - Toán lớp 7 - Học toán với OnlineMath
d) Ta thấy EB = AE
Mà theo quan hệ giữa đường vuông góc với đường xiên thì AC < AE
Vậy nên AC < EB.
Cho tam giác ABC vuông tại C có A= 60 độ và đường phân giác của BAC cắt BC tại E. Kẻ EK vuông góc AB tại K ( K € AB ). Kẻ BD vuông góc AE tai D ( D € AE ). Chứng minh
a) Tam giác ACE = Tam giác AKE
b) AE là đường trung trực của đoạn thẳng CK
c) KA = KB
d) EB > EC
a) Xét t/g vuông ACE và t/g vuông AKE ta có:
gECA=gEKA=90o
=>EA là cạnh huyền chung
Mà gCAE=gKAE( vì AE là tia p/g của góc A)
Nên t/gACE=t/gAKE(GH-GN)
=>AC=AK (2 cạnh tương ứng)
b)Lại có AC=AK (cmt)
=>A nằm trên đường trung trực của KC(1)
=>t/gAK=t/AE
=>E nằm trên đường trung trực của KC (2)
Từ (1)và (2) => AE là đường trung trực của KC
c)Ta có trong t/g vuông BCA thì
gB+gA=90o
=>gB-gA(90o)-60o=30o
=>EAB=90o
=>Ek vuông vs BA
Mà cũng là đường trung trực của AEB
Nên KA=KB.
d) Thấy trong t/g vuông BEK : EB>EK
Mà KA=KB
KA=KC
=>BK=AC hay EB=AC
=>EB>EC
=>đpcm.
@dragon team vâng mình ngu hình lắm ạ :< nên cũng chẳng chắc vầy nên có j sai mong cậu bảo:Đ
: Cho tam giác ABC vuông tại C có và đường phân giác của góc BAC cắt BC tại E. Kẻ EK AB tại K(K AB). Kẻ BD vuông góc với AE ta D ( D AE). Chứng minh:
a) Tam giác ACE bằng tam giác AKE.
b) AE là đường trung trực của đoạn thẳng CK.
c) KA = KB.
d) EB > EC.
a) Xét \(\Delta ACE\) và \(\Delta AKE\) có:
\(\left\{{}\begin{matrix}\widehat{ACE}=\widehat{AKE}=90^o\\AE-\text{cạnh chung}\\\widehat{EAC}=\widehat{EAK}\left(gt\right)\end{matrix}\right.\)
\(\Rightarrow \Delta ACE=\Delta AKE(ch-gn)\)
b) Từ câu a ta có \(\Delta ACE=\Delta AKE\) nên AC = AK, EC = EK. Suy ra AE là đường trung trực của CK.
c) Đề bài sai
d) Ta có EK = EC mà EK < EB (quan hệ giữa đường vuông góc và đường xiên) nên EB > EC.
Cho ABC vuông ở C có 0 A 60 . Tia phân giác của BAC cắt BC tại E. Kẻ EK AB(K AB) , Kẻ BD AE(D AE) . Chứng minh: a. AE là trung trực của đoạn thẳng CK b. KA = KB c. EB > AC d. 3 đường thẳng AC, BD, KE đồng quy
a: Xét ΔACE vuông tại C và ΔAKE vuông tại K có
AE chung
góc CAE=góc KAE
=>ΔACE=ΔAKE
=>AC=AK và EC=EK
=>AE là trung trực của CK
b: Xét ΔEAB có góc EAB=góc EBA
nên ΔEAB cân tại E
mà EK là đường cao
nên K là trung điểm của AB
=>KA=KB
c: EB=EA
EA>AC
=>EB>AC
d: Gọi giao của BD và AC là M
Xét ΔAMB có
AD,BC là đường cao
AD cắt BC tại E
=>E là trực tâm
=>MD vuông góc AB
mà EK vuông góc AB
nên M,E,K thẳng hàng
=>AC,DB,EK đồng quy
Cho tam giác ABC vuông ở C có góc A = 60 độ. Tia phân giác của góc BAC cắt BC ở E. Kẻ EK vuông AB ( K thuộc AB) . Gọi N là giao điểm của EK và AC
a) Chứng minh tam giác ACE = tam giác AKE
b) Chứng minh AE là đường trung trực của CK . So sánh EC và EB
c) Chứng minh NB // CK
Cho tam giác ABC vuông tại C, có góc A=60 độ, Tia phân giác của góc BAC cắt BC tại E, kẻ EK vuông góc với AB ( K thuộc AB ), kẻ BD vuông góc với AE( D thuộc AE) a, tính góc ABC b, chứng minh tam giac AKE c, AE là đường trung trực của đoạn thẳng Ck d,chứng minh KA bằng KB e, chứng minh tam giác KBE = tam giác DBE
a: \(\widehat{ABC}=30^0\)
b: Xét ΔACE vuông tại C và ΔAKE vuông tại K có
AE chung
\(\widehat{CAE}=\widehat{KAE}\)
Do đó: ΔACE=ΔAKE
c: Ta có: ΔACE=ΔAKE
nên AC=AK; EC=EK
hay AE là đường trung trực của CK
d: Xét ΔEAB có \(\widehat{EBA}=\widehat{EAB}\)
nên ΔEAB cân tại E
mà EK là đường cao
nên K là trung điểm của AB
hay KA=KB
Cho tam giác ABC vuông tại C có góc A = 60 độ và đường phân giác của góc BAC cắt BC tại E. Kẻ EK vuông góc AB tại K ( K thuộc AB) . Kẻ BD vuông góc với AE tại D ( D thuộc AE ) . chứng minh
a) tam giác ACE bằng tam giác AKE
b) AE là đường trung trực của đoạn CK
c) KA=KB
d) tam giác BDE = tam giác BKE
a) Xét tam giác ACE và tam giác AKE
có AE chung
góc CAE =góc KAE (GT)
góc ECA = góc EKA =900
suy ra tam giác ACE = tam giác AKE (cạnh huyền-góc nhọn) (1)
b) Từ (1) suy ra AC=AK suy ra A thuộc đường trung trực của CK (2)
Từ (1) suy ra EK=EC suy ra E thuộc đường trung trực của CK (3)
Từ(2) và (3) suy ra AE là đường trung trực của CK
c) tam giác ABC vuông tại C, có góc CAB = 600
suy ra AC=AB:2 ( cạnh đối diện với góc 30 độ bằng nửa cạnh huyền)
mà AK=AC , AK +KB=AB
suy ra AK=AC=KB
d) tam giác BDE=tam giác BKE (cạnh huyền-góc nhọn)
Cho tam giác ABC vuông tại C có góc Â=600 và đường phân giác của góc BAC cắt BC tại E. Kẻ EK vuông với AB tại K (K thuộc AB). Kẻ BD vuông góc với AE tại D (D thuộc AE). Chứng minh:
a) tam giác ACE bằng tam giác AKE
b) AE là đường trung trực của đoạn thẳng CK
c) KA=KB
a) Xét tam giác vuông ACE và tam giác vuông AKE có:
Cạnh AE chung
\(\widehat{CAE}=\widehat{KAE}\) (gt)
\(\Rightarrow\Delta ACE=\Delta AKE\) (Cạnh huyền - góc nhọn)
b) Do \(\Delta ACE=\Delta AKE\) nên AC = AK hay tam giác ACK cân tại A.
Vậy thì phân giác AE cũng đồng thời là đường trung trực của CK.
c) Xét tam giác ABC vuông có góc \(\widehat{CAB}=60^o\Rightarrow\widehat{CBA}=30^o\)
Xét tam giác AEB có \(\widehat{EAB}=\widehat{ABE}\left(=30^o\right)\) nên AEB là tam giác cân tại E.
Vậy thì đường cao EK đồng thời là trung tuyến hay KA = KB.