Cho a,b,c>0 và a+b+c=1.Tìm max của \(P=a+\sqrt{ab}+\sqrt[3]{abc}\)
Cho a, b, c > 0 và \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=3\) . Tìm MAX của :
A= \(\dfrac{1}{\sqrt{a^2-ab+b^2}}+\dfrac{1}{\sqrt{b^2-bc+c^2}}+\dfrac{1}{\sqrt{c^2-ac+a^2}}\)
\(\dfrac{1}{\sqrt{a^2-ab+b^2}}< =\dfrac{1}{\sqrt{2ab-ab}}=\dfrac{1}{\sqrt{ab}}\)
\(\sqrt{\dfrac{1}{b^2-bc+c^2}}< =\dfrac{1}{\sqrt{bc}};\sqrt{\dfrac{1}{c^2-ac+c^2}}< =\dfrac{1}{\sqrt{ac}}\)
=>P<=1/a+1/b+1/c=3
Dấu = xảy ra khi a=b=c=1
1. Tìm max
\(M=\dfrac{yz\sqrt{x-1}+zx\sqrt{y-2}+xy\sqrt{z-3}}{xyz}\)
2. Cho a,b,c >0 và a+b+c=\(\sqrt{2}\)
Tìm max \(N=\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\)
\(1,yz\sqrt{x-1}=yz\sqrt{\left(x-1\right)\cdot1}\le yz\cdot\dfrac{x-1+1}{2}=\dfrac{xyz}{2}\)
\(zx\sqrt{y-2}=\dfrac{zx\cdot2\sqrt{2\left(y-2\right)}}{2\sqrt{2}}\le\dfrac{xyz}{2\sqrt{2}}\\ xy\sqrt{z-3}=\dfrac{xy\cdot2\sqrt{3\left(z-3\right)}}{2\sqrt{3}}\le\dfrac{xyz}{2\sqrt{3}}\)
\(\Leftrightarrow M\le\dfrac{\dfrac{xyz}{2}+\dfrac{xyz}{2\sqrt{2}}+\dfrac{xyz}{2\sqrt{3}}}{xyz}=\dfrac{xyz\left(\dfrac{1}{2}+\dfrac{1}{2\sqrt{2}}+\dfrac{1}{2\sqrt{3}}\right)}{xyz}=\dfrac{1}{2}+\dfrac{1}{2\sqrt{2}}+\dfrac{1}{2\sqrt{3}}\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x-1=1\\y-2=2\\z-3=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=4\\z=6\end{matrix}\right.\)
\(2,N^2=\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)^2\\ \Leftrightarrow N^2\le\left(a+b+b+c+c+a\right)\left(1^2+1^2+1^2\right)\\ \Leftrightarrow N^2\le6\left(a+b+c\right)=6\sqrt{2}\\ \Leftrightarrow N\le\sqrt{6\sqrt{2}}\)
Dấu \("="\Leftrightarrow a=b=c=\dfrac{\sqrt{2}}{3}\)
Cho a,b,c>0 và a+b+c=1.Tìm max của P=\(a+\sqrt{ab}+\sqrt[3]{abc}\)
Cho a,b,c>0 thỏa a+b+c=3. Tìm Max \(P=\frac{2}{3+ab+bc+ca}+\frac{\sqrt{abc}}{6}+\sqrt[3]{\frac{abc}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}}\)
Áp dụng Bất Đẳng Thức \(\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)\forall x;y;z\inℝ\)ta có
\(\left(ab+bc+ca\right)^2\ge3abc\left(a+b+c\right)=9abc>0\Rightarrow ab+bc+ca\ge3\sqrt{abc}\)
Ta có \(\left(1+a\right)\left(1+b\right)\left(1+c\right)\ge\left(1+\sqrt[3]{abc}\right)^3\forall a;b;c>0\)
Thật vậy \(\left(1+a\right)\left(1+b\right)\left(1+c\right)=1+\left(a+b+c\right)+\left(ab+bc+ca\right)+abc\)
\(\ge1+3\sqrt[3]{abc}+3\sqrt[3]{\left(abc\right)^2}+abc=\left(1+\sqrt[3]{abc}\right)^3\)
Khi đó \(P\le\frac{2}{3\left(1+\sqrt{abc}\right)}+\frac{\sqrt[3]{abc}}{1+\sqrt[3]{abc}}+\frac{\sqrt{abc}}{6}\)
Đặt \(\sqrt[6]{abc}=t\Rightarrow\sqrt[3]{abc}=t^2,\sqrt{abc}=t^3\)
Vì a,b,c>0 nên 0<abc\(\le\left(\frac{a+b+c}{3}\right)^2=1\Rightarrow0< t\le1\)
Xét hàm số \(f\left(t\right)=\frac{2}{3\left(1+t^3\right)}+\frac{t^2}{1+t^2}+\frac{1}{6}t^3;t\in(0;1]\)
\(\Rightarrow f'\left(t\right)=\frac{2t\left(t-1\right)\left(t^5-1\right)}{\left(1+t^3\right)^2\left(1+t^2\right)^2}+\frac{1}{2}t^2>0\forall t\in(0;1]\)
Do hàm số đồng biến trên (0;1] nên \(f\left(t\right)< f\left(1\right)\Rightarrow P\le1\)
\(\Rightarrow\frac{2}{3+ab+bc+ca}+\frac{\sqrt{abc}}{6}+\sqrt[3]{\frac{abc}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}}\le1\)
Dấu "=" xảy ra khi a=b=c=1
Cho a,b,c >0 và a=max{a,b,c} .Tìm gtnn của :
\(S=\dfrac{a}{b}+2\sqrt{1+\dfrac{b}{c}}+3\sqrt[3]{1+\dfrac{c}{a}}\)
Cho a,b,c>0 và a=max{a,b,c}.Tìm min của :
\(S=\dfrac{a}{b}+2\sqrt{1+\dfrac{b}{c}}+3\sqrt[3]{1+\dfrac{c}{a}}\)
cho a ≥ 3, b ≥ 4,c ≥ 2 tìm max P=\(\dfrac{ab\sqrt{c-2}+bc\sqrt{a-3}+ca\sqrt{b-4}}{abc}\)
\(\Leftrightarrow P=\dfrac{\sqrt{c-2}}{c}+\dfrac{\sqrt{a-3}}{a}+\dfrac{\sqrt{b-4}}{b}\)
\(=\dfrac{\sqrt{3\left(a-3\right)}}{a\sqrt{3}}+\dfrac{\sqrt{4\left(b-4\right)}}{2b}+\dfrac{\sqrt{2\left(c-2\right)}}{c\sqrt{2}}\le\dfrac{\dfrac{3+a-3}{2}}{a\sqrt{3}}+\dfrac{\dfrac{4+b-4}{2}}{2b}+\dfrac{\dfrac{2+c-2}{2}}{c\sqrt{2}}=\dfrac{1}{2\sqrt{3}}+\dfrac{1}{4}+\dfrac{1}{2\sqrt{2}}\)
\(dấu"="xảy\) \(ra\Leftrightarrow\left\{{}\begin{matrix}3=a-3\\4=b-4\\2=c-2\\\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=6\\b=8\\c=4\end{matrix}\right.\)
Cho a,b,c >0 t/m a+b+c=abc-2. Tìm max
\(P=\sqrt{\dfrac{1}{a+1}}+\sqrt{\dfrac{1}{b+1}}+\sqrt{\dfrac{1}{c+1}}\)
\(a+b+c+2=abc\)
\(\Leftrightarrow2a+2b+2c+3+ab+bc+ca=abc+ab+bc+ca+a+b+c+1\)
\(\Leftrightarrow\left(a+1\right)\left(b+1\right)+\left(c+1\right)\left(b+1\right)+\left(c+1\right)\left(a+1\right)=\left(a+1\right)\left(b+1\right)\left(c+1\right)\)
\(\Leftrightarrow\dfrac{1}{a+1}+\dfrac{1}{b+1}+\dfrac{1}{c+1}=1\)
Đặt \(\left(\dfrac{1}{a+1};\dfrac{1}{b+1};\dfrac{1}{c+1}\right)=\left(x;y;z\right)\)
\(\Rightarrow x+y+z=1\)
BĐT trở thành:
\(P=\sqrt{x}+\sqrt{y}+\sqrt{z}\le\sqrt{3\left(x+y+z\right)}=\sqrt{3}\)
Dấu "=" xảy ra khi và chỉ khi \(x=y=z=\dfrac{1}{3}\) hay \(a=b=c=2\)
Cho a,b,c > 0 thỏa mãn a + b + c = abc . Tìm
\(A_{max}=\frac{a}{\sqrt{bc\left(1+a^2\right)}}+\frac{b}{\sqrt{ca\left(1+b^2\right)}}+\frac{c}{\sqrt{ab\left(1+c^2\right)}}\)
Ta có : \(\frac{a}{\sqrt{bc\left(1+a^2\right)}}=\frac{a}{\sqrt{bc+a.abc}}=\frac{a}{\sqrt{bc+a\left(a+b+c\right)}}\)
\(=\frac{a}{\sqrt{bc+a^2+ab+ac}}\)
\(=\frac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}\)
Áp dụng bđt Cô-si ngược ta có
\(\frac{a}{\sqrt{bc\left(1+a^2\right)}}=\frac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}\le\frac{1}{2}\left(\frac{a}{a+b}+\frac{a}{a+c}\right)\)
C/m tương tự được \(\frac{b}{\sqrt{ca\left(1+b^2\right)}}\le\frac{1}{2}\left(\frac{b}{a+b}+\frac{b}{b+c}\right)\)
\(\frac{c}{\sqrt{ab\left(1+c^2\right)}}\le\frac{1}{2}\left(\frac{c}{a+c}+\frac{c}{b+c}\right)\)
Cộng 3 vế của các bđt trên lại ta được
\(A\le\frac{1}{2}\left(\frac{a}{a+b}+\frac{b}{a+b}+\frac{a}{a+c}+\frac{c}{a+c}+\frac{b}{b+c}+\frac{c}{b+c}\right)\)
\(=\frac{3}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}a+b+c=abc\\a=b=c\end{cases}}\Leftrightarrow\hept{\begin{cases}3a=a^3\\a=b=c\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a^3-3a=0\\a=b=c\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a\left(a^2-3\right)=0\\a=b=c\end{cases}}\)
\(\Leftrightarrow a=b=c=\sqrt{3}\left(a,b,c>0\right)\)
Vậy \(A_{max}=\frac{3}{2}\Leftrightarrow x=y=z=\sqrt{3}\)