Cho ΔABC vuông tại A có AB = 5cm ; BC =13cm.
a) Tính tỉ số lượng giác của ACB .
b) Vẽ hai phân giác BE , CF cắt nhau tại I . Tính AE ,EC ,AF ,BF và số đo BIC
c)Kẻ IH vuông góc với AB,IK vuông góc với AC.Chứng tỏ rằng AHIK là hình vuông
* Cho ΔABC vuông tại A có B= \(30^0\), AB=6cm
a. Giải ΔABC
b. Vẽ đường cao AH và trung tuyến AM của ΔABC. Tính diện tích ΔAHM
* Cho ΔABC vuông tại A có AB=3 cm, BC=5cm, đường cao AH
a. Tính số đo góc B, C
b. Gọi AE là phân giác của góc A (E ∈ BC). Tính AE
Bài 1:
a: Xét ΔBAC vuông tại A có
\(\widehat{B}+\widehat{C}=90^0\)
hay \(\widehat{C}=60^0\)
Xét ΔBAC vuông tại A có
\(AB=BC\cdot\sin60^0\)
\(\Leftrightarrow BC=4\sqrt{3}\left(cm\right)\)
\(\Leftrightarrow AC=2\sqrt{3}\left(cm\right)\)
Cho ΔABC vuông tại A có AB = 3cm; BC = 5cm. Gọi CD là đường phân giác của ΔABC. Tính AC; BD và CD. (khỏi vẽ hình ạ)
Xét tam giác vuông ABC có:
\(AB^2+AC^2=BC^2\\ =>3^2+AC^2=5^2\\ =>AC^2=16\\ =>AC=4cm\)
Cho ΔABC vuông tại A .Đường cao AH ; có AB = 5cm , BC=13cm. Tính AC , CH , AH
Giải hộ mk vs ạ
Xét ΔABC vuông tại A có
\(BC^2=AB^2+AC^2\)
hay AC=12(cm)
Xét ΔACB vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(\left\{{}\begin{matrix}AC^2=CH\cdot BC\\AH\cdot BC=AB\cdot AC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}CH=\dfrac{144}{13}\left(cm\right)\\AH=\dfrac{60}{13}\left(cm\right)\end{matrix}\right.\)
Áp dụng định lí PTG vào tam giác ABC vuông tại A:
\(AC=\sqrt{BC^2-AB^2}=\sqrt{13^2-5^2}=12\left(cm\right)\)
Áp dụng hệ thức lượng vào tam giác ABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta có:
\(AB^2=BH\cdot BC\\ \Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{5^2}{13}\approx1,9\left(cm\right)\\ \Rightarrow CH=BC-BH=11,1\left(cm\right)\)
\(AH^2=BH\cdot HC=11,1\cdot1,9=21,09\left(cm\right)\)
: Cho ΔABC vuông tại A có AB = 5cm, AC = 12cm.
a/ Tính BC.
b/ Trên tia đối của tia AB lấy điểm D sao cho AD = AB. Chứng minh ΔABC = ΔADC.
c/ Chứng minh : BCD cân tại C.
d/ Vẽ đường thẳng qua A song song với BC cắt CD tại E, BE cắt AC tại G. Chứng minh : G là
trọng tâm của BDC. ( Dành cho các lớp 7 A, B, C)
CÂU D THOI CX ĐC:))
a: \(BC=\sqrt{AB^2+AC^2}=13\left(cm\right)\)
b: Xét ΔABC vuông tại A và ΔADC vuông tại A có
AC chung
AB=AD
Do đó: ΔABC=ΔADC
c: Ta có: ΔABC=ΔADC
nên BC=DC
hay ΔCBD cân tại C
ΔABC vuông tại A, BC = 3√5cm. Hình vuông ADEF có cạnh 2cm, D ∈ AB, E ∈ BC, F ∈ AC. Tính AB, AC
Cho ΔABC vuông tại A có AB= 5cm, AC= 12cm, kẻ đường phân giác của góc BE.
Tính độ dài đoạn thẳng AE và EC?
\(BC=\sqrt{5^2+12^2}=13\left(cm\right)\)
XétΔABC có BE là phân giác
nên AE/AB=CE/BC
=>AE/5=CE/13
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AE}{5}=\dfrac{CE}{13}=\dfrac{AE+CE}{5+13}=\dfrac{12}{18}=\dfrac{2}{3}\)
Do đó: AE=10/3(cm); CE=26/3(cm)
Áp dụng định lý Pytago cho tam giác ABC:
`AB^2 + AC^2 = BC^2`
`=> 5^2 + 12^2 = BC^2`
`=> BC = 13 cm`.
Áp dụng t/c tia phân giác, ta có:
`(BA)/(AE) = (BC)/(EC) <=> 5/(AE) = (13)/(EC) `
`=> 5EC = 13AE` mà `AE + EC = 12 cm`.
`=> 5AE + 5EC = 60 cm`.
`=> 18AE = 60 cm`
`=> AE = 10/3 cm`
`=> EC = 26/3cm`
- Áp dụng định lý pi ta go vào tam giác ABC vuông tại A ta được :
\(AB^2+AC^2=BC^2\)
\(\Rightarrow AC^2+5^2=13^2\)
\(\Rightarrow AC=12\left(cm\right)\)
- Xét tam giác BHA và tam giác BAC có : \(\left\{{}\begin{matrix}\widehat{BHA}=\widehat{BAC}=90^o\\\widehat{B}\left(chung\right)\end{matrix}\right.\)
=> Hai tam giác trên đồng dạng .
=> \(\dfrac{BH}{AB}=\dfrac{AB}{BC}\)
=> \(BH=\dfrac{AB^2}{BC}=\dfrac{25}{13}\left(cm\right)\)
=> \(CH=BC-BH=\dfrac{144}{13}\left(cm\right)\)
- Áp dụng định lý pi ta go vào tam giác ABH vuông tại H ta được :
\(AH^2+BH^2=AB^2\)
\(\Rightarrow AH=\dfrac{60}{13}\left(cm\right)\)
Vậy ...
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow AC^2=BC^2-AB^2=13^2-5^2=144\)
hay AC=12(cm)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH\cdot BC=AB\cdot AC\)
\(\Leftrightarrow AH\cdot13=5\cdot12\)
\(\Leftrightarrow AH\cdot13=60\)
hay \(AH=\dfrac{60}{13}cm\)
Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:
\(AB^2=BH^2+AH^2\)
\(\Leftrightarrow BH^2=AB^2-AH^2=5^2-\left(\dfrac{60}{13}\right)^2=\dfrac{625}{169}\)
hay \(BH=\dfrac{25}{13}cm\)
Ta có: BH+CH=BC(H nằm giữa B và C)
\(\Leftrightarrow CH=BC-BH=13-\dfrac{25}{13}\)
hay \(CH=\dfrac{144}{13}cm\)
Vậy: AC=12cm; \(AH=\dfrac{60}{13}cm\); \(BH=\dfrac{25}{13}cm\); \(CH=\dfrac{144}{13}cm\)
Cho ΔABC có BC = AC = 5cm, AB = 6cm. Kẻ CH vuông góc AB tại H.
a) Tính độ dài CH.
b) Kẻ HD vuông góc AC tại D, kẻ HE vuông góc CB tại E. Tính độ dài HD và HE.
Bài 4. (3 điểm):
Cho ΔABC vuông tại A có AB < AC. Đường trung tuyến AM. Trên tia đối của tia MA lấy điểm D sao cho DM = MA.
a) Chứng minh ΔAMC = ΔDMB.
b) Biết AB = 5cm, BC = 13cm. Tính AC.
c) Qua M kẻ đường thẳng MN vuông góc với AB tại N; Kẻ MK vuông góc với AC tại K. Chứng minh rằng CN, AM, BK đồng quy tại một điểm