Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lizy
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 1 2024 lúc 20:27

1: Thay x=1 và y=0 vào hệ phương trình, ta được:

\(\left\{{}\begin{matrix}1+a\cdot0=1\\a\cdot1+0=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}1=1\left(đúng\right)\\a=2\end{matrix}\right.\)

=>a=2

2: Để hệ có nghiệm duy nhất thì \(\dfrac{1}{a}\ne\dfrac{a}{1}\)

=>\(a^2\ne1\)

=>\(a\notin\left\{1;-1\right\}\)

Vũ Thanh Lương
Xem chi tiết
Lizy
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 1 2024 lúc 23:11

Để hệ có nghiệm duy nhất thì \(\dfrac{a}{1}\ne\dfrac{2a}{a+1}\)

=>\(a\left(a+1\right)\ne2a\)

=>\(a^2+a-2a\ne0\)

=>\(a^2-a\ne0\)

=>\(a\left(a-1\right)\ne0\)

=>\(a\notin\left\{0;1\right\}\)

vi lê
Xem chi tiết
Vũ Đình Thái
11 tháng 1 2021 lúc 19:57

Từ pt (1) ta có: y=ax-2 thế vào pt (2) ta được:

          \(x+a\left(ax-2\right)=3\)

\(\Leftrightarrow x+a^2x-2a=3\)

\(\Leftrightarrow\left(a^2+1\right)x=2a+3\)

\(\Leftrightarrow x=\dfrac{2a+3}{a^2+1}\) (Vì \(a^2+1\ne0\))

\(\Rightarrow y=a\cdot\dfrac{2a+3}{a^2+1}-2=\dfrac{3a-2}{a^2+1}\)

Vậy với mọi a hệ có nghiệm duy nhất là \(\left(x;y\right)=\left(\dfrac{2a+3}{a^2+1};\dfrac{3a-2}{a^2+1}\right)\) 

Eros Starfox
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 4 2023 lúc 23:54

a: Khi a=1 thì hệ sẽ là x-y=1 và x+y=1

=>Hệ vô nghiệm

b: Để hệ có nghiệm duy nhất thì 1/a<>-1/1=-1

=>a<>-1

taekook
Xem chi tiết
đấng ys
Xem chi tiết
halo
Xem chi tiết
Nguyễn Việt Lâm
29 tháng 1 2021 lúc 14:38

a. Bạn tự giải.

b.

\(\left\{{}\begin{matrix}ax-2y=a\\-4x+2y=2a+2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}ax-2y=a\\\left(a-4\right)x=3a+2\end{matrix}\right.\)

Hệ có nghiệm duy nhất khi \(a-4\ne0\Leftrightarrow a\ne4\)

Khi đó: \(\left\{{}\begin{matrix}x=\dfrac{3a+2}{a-4}\\y=\dfrac{a^2+3a}{a-4}\end{matrix}\right.\)

\(x-y=1\Leftrightarrow\dfrac{3a+2}{a-4}-\dfrac{a^2+3a}{a-4}=1\)

\(\Leftrightarrow\dfrac{2-a^2}{a-4}=1\Leftrightarrow2-a^2=a-4\)

\(\Leftrightarrow a^2+a-6=0\Rightarrow\left[{}\begin{matrix}a=2\\a=-3\end{matrix}\right.\)

Bảo Ngọc Trần
Xem chi tiết
Akai Haruma
12 tháng 5 2021 lúc 0:42

Lời giải:

HPT \(\Leftrightarrow \left\{\begin{matrix} ax-2y=a\\ y=a+1+2x\end{matrix}\right.\Rightarrow ax-2(a+1+2x)=a\)

\(\Leftrightarrow x(a-4)=3a+2(*)\)

Để hệ pt đã cho có nghiệm $(x,y)$ duy nhất thì PT $(*)$ phải có nghiệm $x$ duy nhất

Điều này xảy ra khi $a-4\neq 0\Leftrightarrow a\neq 4$