Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
jungkookie
Xem chi tiết
Thân Thị Hoa
Xem chi tiết
Nguyễn Hoàng Thái
Xem chi tiết
alibaba nguyễn
16 tháng 8 2016 lúc 21:07
Nhân 9 hai vế tách tử thành 8[(3x)^2 - 25] -25
alibaba nguyễn
16 tháng 8 2016 lúc 18:06

Ta có y = (8x- 25)/(3x + 5) <=> 9y = 24x - 40 -25/(3x + 5)(1)

Để 9y nguyên thì 3x+5 phải là ước nguyên của 25 hay 3x + 5 = +-1;+-5;+-25

Giải ra thế lần lược vào (1) cái nào cho kết quả là bội của 9 thì đó là nghiệm x cần tìm có x => y

Nguyễn Hoàng Thái
16 tháng 8 2016 lúc 20:02

không hiểu lắm bạn ơi, làm thẳng ra luôn đi

Nguyễn Hoàng Thái
Xem chi tiết
OoO cô bé tinh nghịch Oo...
2 tháng 10 2016 lúc 13:04

\(8x^2-3xy-5y=25\)

8x² - 3xy - 5y = 25 
<=> 72x² - 27xy - 45y = 225 ( nhân 9 vào 2 vế) 
<=> 72x² - 27xy - 120x + 120x - 45y - 200 = 25 
<=> 3x(24x - 9y - 40) + 5(24x - 9y - 40) = 25 
<=> (3x + 5)(24x - 9y - 40) = 25 
@ TH1 : 
{ 3x + 5 = 1 
{ 24x - 9y - 40 = 25 
=> x = - 4/3; y = - 97/9 ( loại) 
@ TH2 : 
{ 3x + 5 = - 1 => x = - 2 
{ 24x - 9y - 40 = - 25 
=> x = - 2 ; y = - 7 ( nhận) 
@ TH3 : 
{ 3x + 5 = 5 
{ 24x - 9y - 40 = 5 
=> x = 0; y = - 5 ( nhận) 
@ TH4 : 
{ 3x + 5 = - 5 
{ 24x - 9y - 40 = - 5 
=> x = - 10/3; y = - 115/9 ( loại) 
@ TH5 : 
{ 3x + 5 = 25 
{ 24x - 9y - 40 = 1 
=> x = 20/3; y = - 39/9 ( loại) 
@ TH6 : 
{ 3x + 5 = - 25 
{ 24x - 9y - 40 = - 1 
=> x = - 10; y = - 33 ( nhận) 
KL : PT có 3 nghiệm nguyên (x; y) = (- 2;- 7); (0; - 5); ( - 10; - 33) 

KUDO SHINICHI
2 tháng 10 2016 lúc 13:12

Nhân 9 hai vế tách tử thành

8[(3x)^2-25) 

=25

Băng Dii~
2 tháng 10 2016 lúc 19:12

tìm x,y thuộc Z thỏa mãn 

8x- 3xy - 5y = 25

8x2−3xy−5y=25

8x² - 3xy - 5y = 25 
<=> 72x² - 27xy - 45y = 225 ( nhân 9 vào 2 vế) 
<=> 72x² - 27xy - 120x + 120x - 45y - 200 = 25 
<=> 3x(24x - 9y - 40) + 5(24x - 9y - 40) = 25 
<=> (3x + 5)(24x - 9y - 40) = 25 
 TH1 : 
{ 3x + 5 = 1 
{ 24x - 9y - 40 = 25 
=> x = - 4/3; y = - 97/9 ( loại) 
 TH2 : 
{ 3x + 5 = - 1 => x = - 2 
{ 24x - 9y - 40 = - 25 
=> x = - 2 ; y = - 7 ( nhận) 
 TH3 : 
{ 3x + 5 = 5 
{ 24x - 9y - 40 = 5 
=> x = 0; y = - 5 ( nhận) 
 TH4 : 
{ 3x + 5 = - 5 
{ 24x - 9y - 40 = - 5 
=> x = - 10/3; y = - 115/9 ( loại) 
TH5 : 
{ 3x + 5 = 25 
{ 24x - 9y - 40 = 1 
=> x = 20/3; y = - 39/9 ( loại) 
 TH6 : 
{ 3x + 5 = - 25 
{ 24x - 9y - 40 = - 1 
=> x = - 10; y = - 33 ( nhận) 
KL : PT có 3 nghiệm nguyên (x; y) = (- 2;- 7); (0; - 5); ( - 10; - 33) 

Phương Thảo
Xem chi tiết
ILoveMath
13 tháng 12 2021 lúc 20:28

\(a,14x^2y-21xy^2+28x^2y^2=7xy\left(x-3y+4xy\right)\\ b,x\left(x+y\right)-5x-5y=x\left(x+y\right)-5\left(x+y\right)=\left(x+y\right)\left(x-5\right)\\ c,10x\left(x-y\right)-8\left(y-x\right)=10x\left(x-y\right)+8\left(x-y\right)=\left(x-y\right)\left(10x+8\right)=2\left(x-y\right)\left(5x+4\right)\)

\(d,\left(3x+1\right)^2-\left(x+1\right)^2=\left(3x+1-x-1\right)\left(3x+1+x+1\right)=2x\left(4x+2\right)=4x\left(2x+1\right)\)\(e,x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)+3xyz-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)

Kamato Heiji
Xem chi tiết
Nguyễn Việt Lâm
27 tháng 12 2020 lúc 11:47

Lớp 8 thì bài này hơi phức tạp, lớp 9 sử dụng delta kẹp biến sẽ dễ hơn

Hướng dẫn 1 câu, câu sau bạn tự làm nhé:

\(\left(2x^2-xy-y^2\right)+7x+2y-7=0\)

\(\Leftrightarrow\left(x-y\right)\left(2x+y\right)+7x+2y-7=0\)

(Đến đây ta cần chuyển về dạng \(XY+a.X+b.Y+...\) để đưa về pt nghiệm nguyên quen thuộc.

Do đó ta cần phân tách \(7x+2y\) về dạng \(a\left(x-y\right)+b\left(2x+y\right)\)

\(7x+2y=a\left(x-y\right)+b\left(2x+y\right)\)

\(\Leftrightarrow7x+2y=\left(a+2b\right)x+\left(-a+b\right)y\)

Đồng nhất hệ số 2 vế: \(\left\{{}\begin{matrix}a+2b=7\\-a+b=2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=1\\b=3\end{matrix}\right.\)

Do đó ta tách được như dưới đây, toàn bộ phần tách trên làm ở nháp):

\(\Leftrightarrow\left(x-y\right)\left(2x+y\right)+\left(x-y\right)+3\left(2x+y\right)-7=0\)

(Dạng cơ bản \(XY+X+3Y-7=0\) rồi)

\(\Leftrightarrow\left(x-y\right)\left(2x+y\right)+\left(x-y\right)+3\left(2x+y\right)+3-10=0\)

\(\Leftrightarrow\left(x-y\right)\left(2x+y+1\right)+3\left(2x+y+1\right)=10\)

\(\Leftrightarrow\left(x-y+3\right)\left(2x+y+1\right)=10\)

Đến đây thì chỉ cần lập bảng ước số là xong

Nguyễn Phạm Mỹ Hà
Xem chi tiết
NGUYỄN CẨM TÚ
Xem chi tiết
Lightning Farron
19 tháng 6 2017 lúc 17:42

Đặt \(\dfrac{x}{y}=\dfrac{z}{t}=k\Rightarrow x=ky;z=kt\)

Xét \(VT=\dfrac{2x^2-3xy+5y^2}{2y^2+3xy}=\dfrac{2\left(ky\right)^2-3ky\cdot y+5y^2}{2y^2+3ky\cdot y}\)

\(=\dfrac{2k^2y^2-3ky^2+5y^2}{2y^2+3ky^2}=\dfrac{y^2\left(2k^2-3k+5\right)}{y^2\left(2+3k\right)}=\dfrac{2k^2-3k+5}{3k+5}\)

\(VP=\dfrac{2z^2-3zt+5t^2}{2t^2+3zt}=\dfrac{2\left(kt\right)^2-3kt\cdot t+5t^2}{2t^2+3kt\cdot t}\)

\(=\dfrac{2k^2t^2-3kt^2+5t^2}{2t^2+3kt^2}=\dfrac{t^2\left(2k^2-3k+5\right)}{t^2\left(2+3k\right)}=\dfrac{2k^2-3k+5}{3k+5}\)

Dễ thấy \(VT=VP\)\(\forall \frac{x}{y}=\frac{z}{t}\) nên ta có ĐPCM

Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 8 2021 lúc 21:11

Ta có: \(\dfrac{x}{y}=\dfrac{7}{20}\)

nên \(\dfrac{x}{7}=\dfrac{y}{20}\)(1)

Ta có: \(\dfrac{y}{z}=\dfrac{5}{8}\)

nên \(\dfrac{y}{5}=\dfrac{z}{8}\)

hay \(\dfrac{y}{20}=\dfrac{z}{32}\)(2)

Từ (1) và (2) suy ra \(\dfrac{x}{7}=\dfrac{y}{20}=\dfrac{z}{32}\)

hay \(\dfrac{2x}{14}=\dfrac{5y}{100}=\dfrac{2z}{64}\)

mà 2x-5y+2z=100

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{2x}{14}=\dfrac{5y}{100}=\dfrac{2z}{64}=\dfrac{2x-5y+2z}{14-100+64}=\dfrac{100}{-22}=\dfrac{-50}{11}\)

Do đó:

\(\left\{{}\begin{matrix}\dfrac{x}{7}=\dfrac{-50}{11}\\\dfrac{y}{20}=\dfrac{-50}{11}\\\dfrac{z}{32}=-\dfrac{50}{11}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{350}{11}\\y=\dfrac{-1000}{11}\\z=\dfrac{-1600}{11}\end{matrix}\right.\)

Phía sau một cô gái
2 tháng 8 2021 lúc 21:12

Ta có:  \(\dfrac{x}{y}=\dfrac{7}{20}\Rightarrow\dfrac{x}{7}=\dfrac{y}{20}\Rightarrow\dfrac{x}{14}=\dfrac{y}{40}\Rightarrow\dfrac{2x}{28}=\dfrac{5y}{200}\) \(\left(1\right)\)

Lại có:  \(\dfrac{y}{z}=\dfrac{5}{8}\Rightarrow\dfrac{y}{5}=\dfrac{z}{8}\Rightarrow\dfrac{y}{40}=\dfrac{z}{64}\Rightarrow\dfrac{5y}{200}=\dfrac{2z}{128}\)   \(\left(2\right)\)

Kết hợp ( 1 ) và ( 2 ) ta có:     \(\dfrac{2x+5y-2z}{28+200-128}=\dfrac{100}{100}=1\)

⇒  \(\dfrac{2x}{28}=1\Rightarrow x=\dfrac{1.28}{2}=14\)

⇒  \(\dfrac{5y}{200}=1\Rightarrow y=\dfrac{1.200}{5}=40\)

⇒  \(\dfrac{2z}{128}=1\Rightarrow z=\dfrac{1.128}{2}=64\)

Trịnh Bảo Châu
28 tháng 10 2023 lúc 12:38

fvklfksokodzsưkfposkfposzokokozspkfposfkkkfff;oeajfirepjfirjiod