\(\left|x-1\right|+1\)=22\(\dfrac{9}{2013}\)
Tim x
thực hiện phép tính:
\(\dfrac{1}{x\left(x+1\right)}\)+\(\dfrac{1}{\left(x+1\right)\left(x+2\right)}\)+\(\dfrac{1}{\left(x+2\right)\left(x+3\right)}\)+...+\(\dfrac{1}{\left(x+2013\right)\left(x+2014\right)}\)
\(=\dfrac{1}{x}-\dfrac{1}{x+1}+\dfrac{1}{x+1}-\dfrac{1}{x+2}+...+\dfrac{1}{x+2013}-\dfrac{1}{x+2014}\)
=1/x-1/x+2014
\(=\dfrac{x+2014-x}{x\left(x+2014\right)}=\dfrac{2014}{x\left(x+2014\right)}\)
Tính S= \(\dfrac{\left(x^2+x-3\right)^{2013}}{\left(x^5+x^4-x^3-2\right)^{2013}}+\left(x^5+x^4-x^3+1\right)^{2013}\)
với x=\(\dfrac{\sqrt{5}-1}{2}\)
Tính
\(A=\dfrac{1}{x\left(x+1\right)}+\dfrac{1}{\left(x+1\right)\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+3\right)}+.....+\dfrac{1}{\left(x+2013\right)\left(x+2014\right)}\)
\(A=\dfrac{1}{x\left(x+1\right)}+\dfrac{1}{\left(x+1\right)\left(x+2\right)}+...+\dfrac{1}{\left(x+2013\right)\left(x+2014\right)}\)
\(\Rightarrow A=\dfrac{1}{x}-\dfrac{1}{x+1}+\dfrac{1}{x+1}-\dfrac{1}{x+2}+...+\dfrac{1}{x+2013}-\dfrac{1}{x+2014}\)
\(\Rightarrow A=\dfrac{1}{x}-\dfrac{1}{x+2014}\)
\(\Rightarrow A=\dfrac{2014}{x\left(x+2014\right)}\)
\(A=\dfrac{1}{x\left(x+1\right)}+\dfrac{1}{\left(x+1\right)\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+3\right)}+....+\dfrac{1}{\left(x+2013\right)\left(x+2014\right)}\)
\(=\dfrac{1}{x}+\dfrac{1}{x+1}+\dfrac{1}{x+1}-\dfrac{1}{x+2}+\dfrac{1}{x+2}-\dfrac{1}{x+3}+...+\dfrac{1}{x+2013}-\dfrac{1}{x+2014}\)
\(=\dfrac{1}{x}-\dfrac{1}{x+2014}-\dfrac{x+2014}{x\left(x+2014\right)}-\dfrac{x}{x\left(x+2014\right)}\)
\(=\dfrac{x+2014-x}{x\left(x+2014\right)}\)
\(=\dfrac{2014}{x\left(x+2014\right)}\)
Tim Max :
E = \(\dfrac{4\left|x\right|+9}{\left|x\right|+1}\)
F = \(\dfrac{2\left|x\right|+8}{3\left|x\right|+1}\)
\(E=\dfrac{4\left|x\right|+9}{\left|x\right|+1}\)
\(\left\{{}\begin{matrix} \left|x\right|\ge0\Rightarrow4\left|x\right|\ge0\Rightarrow4\left|x\right|+9\ge9\\\left|x\right|\ge0\Rightarrow x+1\ge1\end{matrix}\right.\)
\(MAX_E\Rightarrow MIN_{\left|x\right|+1}\)
\(MIN_{\left|x\right|+1}=1\)
\(\Rightarrow\left|x\right|=0\Rightarrow x=0\)
\(\Rightarrow MAX_E=\dfrac{4.\left|0\right|+9}{\left|0\right|+1}=\dfrac{9}{1}=9\)
\(F=\dfrac{2\left|x\right|+8}{3\left|x\right|+1}\)
\(\left\{{}\begin{matrix}\left|x\right|\ge0\Rightarrow2\left|x\right|\ge0\Rightarrow2\left|x\right|+8\ge8\\\left|x\right|\ge0\Rightarrow3\left|x\right|\ge0\Rightarrow3\left|x\right|+1\ge1\end{matrix}\right.\)
\(MAX_F\Rightarrow MIN_{3\left|x\right|+1}\)
\(MIN_{3\left|x\right|+1}=1\)
\(\Rightarrow\left|x\right|=0\Rightarrow x=0\)
\(\Rightarrow MAX_F=\dfrac{2.\left|0\right|+8}{3.\left|0\right|+1}=\dfrac{8}{1}=8\)
\(\)
Cho Bt C=\(\left(\dfrac{\sqrt{x}}{3+\sqrt{x}}+\dfrac{x+9}{9-x}\right)\div\left(\dfrac{3\sqrt{x}+1}{x-3\sqrt{x}}-\dfrac{1}{\sqrt{x}}\right)\)
Rut gon C
tim x sao cho C= x-1
ĐK:x>0,x\(\ne\)9
\(C=\left(\dfrac{\sqrt{x}}{3+\sqrt{x}}+\dfrac{x+9}{9-x}\right)\div\left(\dfrac{3\sqrt{x}+1}{x-3\sqrt{x}}-\dfrac{1}{\sqrt{x}}\right)=\left(\dfrac{\sqrt{x}}{\sqrt{x}+3}-\dfrac{x+9}{x-9}\right)\div\left(\dfrac{3\sqrt{x}+1}{x-3\sqrt{x}}-\dfrac{1}{\sqrt{x}}\right)=\left[\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}-\dfrac{x+9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right]\div\left[\dfrac{3\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-3\right)}-\dfrac{\sqrt{x}-3}{\sqrt{x}\left(\sqrt{x}-3\right)}\right]=\dfrac{x-3\sqrt{x}-x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\div\dfrac{3\sqrt{x}+1-\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}-3\right)}=\dfrac{-3\sqrt{x}-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{2\sqrt{x}+4}=\dfrac{-3\left(\sqrt{x}+3\right).\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)\left(2\sqrt{x}+4\right)}=\dfrac{-3\sqrt{x}}{2\sqrt{x}+4}\)
Các chế ơi, còn 10 câu nữa thui, sắp hết rùi.
FIGHTING!
JIAYOU!
HWAITING!
GAMBATTEYO!
Giải các phương trình sau
16) \(3\left(x+5\right)\left(x+6\right)\left(x+7\right)=8x\)
17) \(\left(x+6\right)^4+\left(x+4\right)^4=82\)
18) \(\left(x^2+6x+10\right)^2+\left(x+3\right)\left(3x^2+20x+36\right)=0\)
19) \(2\left(x^2+x+1\right)^2-7\left(x-1\right)^2=13\left(x^3-1\right)\)
20) \(\left(x+2008\right)^4+\left(x+2009\right)^4=\dfrac{1}{8}\)
21) \(x^4+18x=13x^2+5\)
22) \(\dfrac{1}{5x^2}+\dfrac{1}{x^2-9x+36}=\dfrac{1}{x^2-4x+16}\)
23) \(\dfrac{\left(x+1\right)^2}{x^2+2x+2}-\dfrac{x^2+2x}{\left(x+1\right)^2}=\dfrac{1}{90}\)
24) \(\left(2x^2+x-2013\right)^2+4\left(x^2-5x-2012\right)^2=4\left(2x^2+x-2013\right)\left(x^2-5x-2012\right)\)
25)\(\dfrac{x-4}{x+1}+\dfrac{x-4}{x+1}+\dfrac{8}{3}=\dfrac{x-8}{x+2}+\dfrac{x+8}{x-2}\)
Thanks các cậu vì đã giúp mk
Bài 17)
(x - 2)^4 + (x - 6)^4 = 82
Đặt t = x + 3
=> x + 2 = t - 1; x + 4 = t + 1.
ta có pt: (t - 1)^4 + (t + 1)^4 = 82
<=>[(t -1)²]² + [(t + 1)²]² = 82
<=> (t² - 2t + 1)² + (t² + 2t + 1)² = 82
<=> (t²+1)² - 4t(t²+1) + 4t² + (t²+1)² + 4t(t²+1) + 4t² = 82
<=> (t² + 1)² + 4t² = 41
<=> t^4 + 6t² + 1 = 41
<=> (t²)² + 6t² - 40 = 0
<=> t² = -10 (loại) hoặc t² = 4
<=> t = 2 hoặc t = -2
với t = -2 => x = -5
với t = 2 => x = -1
vậy pt có hai nghiệm là : x = -1 hoặc x = -5
Bài 18: Phương trình đã cho được viết thành: $${({x^2} + 6x + 10)^2} + (x + 3)\left[ {3\left( {{x^2} + 6x + 10} \right) + 2\left( {x + 3} \right)} \right] = 0$$
Đặt $u = {x^2} + 6x + 10 > 0,v = x + 3$, suy ra:
$${u^2} + v\left( {3u + 2v} \right) = 0 \Leftrightarrow \left( {u + v} \right)\left( {u + 2v} \right) = 0 \Leftrightarrow \left[ \begin{gathered}
u + v = 0 \\
u + 2v = 0 \\
\end{gathered} \right.$$
$$ \Leftrightarrow \left[ \begin{gathered}
{x^2} + 6x + 10 + x + 3 = 0 \\
{x^2} + 6x + 10 + 2\left( {x + 3} \right) = 0 \\
\end{gathered} \right. \Leftrightarrow \left[ \begin{gathered}
{x^2} + 7x + 13 = 0 \\
{x^2} + 8x + 16 = 0 \\
\end{gathered} \right. \Leftrightarrow x = - 4$$
Bài 19:
(x² + x + 1) - 7(x - 1)² = 13(x³ - 1)
⇔ 2x² + 2x + 2 - 7(x² - 2x + 1) = 13x - 13
⇔ 2x² + 2x + 2 - 7x² + 14x - 7 = 13x³ - 13
⇔ 13x³ + 5x² - 16x - 8 = 0
⇔ 13x³ + 13x² - 8x² - 8x - 8x - 8 = 0
⇔ 13x²(x + 1) - 8x(x + 1) - 8(x + 1) = 0
⇔ (x + 1)(13x² - 8x - 8) = 0
⇔ \(\left[{}\begin{matrix}x+1=0\\13x^2-8x-8=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{4\pm2\sqrt{30}}{13}\end{matrix}\right.\)
tim x ϵ N* biết \(\left(1+\dfrac{1}{1.3}\right)\left(1+\dfrac{1}{2.4}\right)\left(1+\dfrac{1}{3.5}\right)...\left[1+\dfrac{1}{x\left(x+2\right)}\right]=\dfrac{31}{16}\)
\(\left(1+\dfrac{1}{1.3}\right).\left(1+\dfrac{1}{2.4}\right).\left(1+\dfrac{1}{3.5}\right).........\left[1+\dfrac{1}{x.\left(x+2\right)}\right]=\dfrac{31}{16}\)
\(\Rightarrow\dfrac{2^2}{1.3}.\dfrac{3^2}{2.4}.\dfrac{4^2}{3.5}........\dfrac{\left(x+1\right)^2}{x.\left(x+2\right)}=\dfrac{31}{16}\)
\(\Rightarrow\dfrac{\left[2.3.4.............\left(x+1\right)\right].\left[2.3.4.............\left(x+1\right)\right]}{\left(1.2.3...................x\right).\left(3.4.5..........................\left(x+2\right)\right)}=\dfrac{31}{16}\)
\(\Rightarrow\dfrac{\left(x+1\right).2}{1.\left(x+2\right)}=\dfrac{31}{16}\)
\(\Leftrightarrow16.2\left(x+1\right)=31.\left(x+2\right)\)
\(\Rightarrow32x+32=31x+62\)
\(\Rightarrow x=30\)
Vậy x=30
Chúc bn học tốt
ĐKXĐ: \(x\notin\left\{0;-2\right\}\)
Ta có: \(\left(1+\dfrac{1}{1\cdot3}\right)\left(1+\dfrac{1}{2\cdot4}\right)\left(1+\dfrac{1}{3\cdot5}\right)\cdot...\cdot\left(1+\dfrac{1}{x\left(x+2\right)}\right)=\dfrac{31}{16}\)
\(\Leftrightarrow\dfrac{1\cdot3+1}{1\cdot3}+\dfrac{1+2\cdot4}{2\cdot4}+\dfrac{1+3\cdot5}{3\cdot5}\cdot...\cdot\dfrac{1+x\left(x+2\right)}{x\left(x+2\right)}=\dfrac{31}{16}\)
\(\Leftrightarrow\dfrac{2\cdot2}{1\cdot3}+\dfrac{3\cdot3}{2\cdot4}+\dfrac{4\cdot4}{3\cdot5}+...+\dfrac{\left(x+1\right)\left(x+1\right)}{x\left(x+2\right)}=\dfrac{31}{16}\)
\(\Leftrightarrow\dfrac{1\cdot2\cdot3\cdot...\cdot\left(x+1\right)}{1\cdot2\cdot3\cdot...\cdot x}\cdot\dfrac{2\cdot3\cdot4\cdot...\cdot\left(x+1\right)}{3\cdot4\cdot5\cdot...\cdot\left(x+2\right)}=\dfrac{31}{16}\)
\(\Leftrightarrow\left(x+1\right)\cdot\dfrac{2}{x+2}=\dfrac{31}{16}\)
\(\Leftrightarrow\dfrac{2x+2}{x+2}=\dfrac{31}{16}\)
\(\Leftrightarrow\dfrac{32x+32}{16\left(x+2\right)}=\dfrac{31\left(x+2\right)}{16\left(x+2\right)}\)
Suy ra: \(32x+32=31x+62\)
\(\Leftrightarrow x=30\)(thỏa ĐK)
Vậy: S={30}
A = \(\left(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}-3.\left(\dfrac{\sqrt{x}+3}{x-9}\right)\right):\left(\dfrac{2\sqrt{x}-1}{\sqrt{x}-3}-1\right)\)
a) Rut gon A
b) Tim GTNN cua A
Câu 1: Tim x, y biet:
a) \(2.x-\dfrac{5}{4}=\dfrac{20}{15}\)
b) \(\left(x+\dfrac{1}{3}\right)^3=\left(\dfrac{-1}{8}\right)\)
Câu 2: Tim cac so a,b biet:
\(\dfrac{a}{2}=\dfrac{b}{3}\) va \(a+b=-15\)
Câu 3: Tim x \(\in\) Q biet:
\(\left(x+1\right)\left(x-2\right)< 0\)
Câu 4: Thuc hien phep tinh:
\(B=\left(\dfrac{3}{7}\right)^{21}:\left(\dfrac{9}{49}\right)^9\)
1.a)\(2.x-\dfrac{5}{4}=\dfrac{20}{15}\)
\(\Leftrightarrow2.x=\dfrac{20}{15}+\dfrac{5}{4}=\dfrac{4}{3}+\dfrac{5}{4}=\dfrac{16+15}{12}=\dfrac{31}{12}\)
\(\Leftrightarrow x=\dfrac{31}{12}:2=\dfrac{31}{12}.\dfrac{1}{2}=\dfrac{31}{24}\)
b)\(\left(x+\dfrac{1}{3}\right)^3=\left(-\dfrac{1}{8}\right)\)
\(\Leftrightarrow\left(x+\dfrac{1}{3}\right)^3=\left(-\dfrac{1}{2}\right)^3\)
\(\Leftrightarrow x+\dfrac{1}{3}=-\dfrac{1}{2}\)
\(\Leftrightarrow x=-\dfrac{1}{2}-\dfrac{1}{3}=-\dfrac{5}{6}\)
2.Theo đề bài, ta có: \(\dfrac{a}{2}=\dfrac{b}{3}\) và \(a+b=-15\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{a+b}{2+3}=\dfrac{-15}{5}=-3\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a}{2}=-3\Rightarrow a=-6\\\dfrac{b}{3}=-3\Rightarrow b=-9\end{matrix}\right.\)
3.Ta xét từng trường hợp:
-TH1:\(\left\{{}\begin{matrix}x+1>0\\x-2< 0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x>-1\\x< 2\end{matrix}\right.\)\(\Rightarrow x\in\left\{0;1\right\}\)
-TH2:\(\left\{{}\begin{matrix}x+1< 0\\x-2>0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x< -1\\x>2\end{matrix}\right.\)\(\Rightarrow x\in\varnothing\)
Vậy \(x\in\left\{0;1\right\}\)
4.\(B=\left(\dfrac{3}{7}\right)^{21}:\left(\dfrac{9}{49}\right)^9=\left(\dfrac{3}{7}\right)^{21}:\left[\left(\dfrac{3}{7}\right)^2\right]^9=\left(\dfrac{3}{7}\right)^{21}:\left(\dfrac{3}{7}\right)^{18}=\left(\dfrac{3}{7}\right)^3=\dfrac{27}{343}\)