Tìm điệu kiện x để phân thức sau được xác định
2x-3 trên x^2+x-2
Tìm điều kiện của x để phân thức được xác định
2x-3 trên x^3+x
rút gọn phân thức:\(\dfrac{\left(x^2+2x+4\right)}{x+2}\)
tìm điều kiện xác định để phân thức trên được xác định
Cho phân thức \(\dfrac{3x+3}{x^2-1}\)
a, Tìm điều kiện của x để giá trị phân thức được xác định.
b, Rút gọn phân thức trên.
c, Tìm x để phân thức có giá trị bằng -2
a. \(ĐKXĐ:\left\{{}\begin{matrix}x\ne1\\x\ne-1\end{matrix}\right.\)
b. \(A=\dfrac{3x+3}{x^2-1}\\ A=\dfrac{3\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\\ A=\dfrac{3}{x-1}\)
c. Để \(A=-2\) thì \(\dfrac{3}{x-1}=-2=\dfrac{3}{\dfrac{-3}{2}}\\ \Leftrightarrow x-1=\dfrac{-3}{2}\\ \Leftrightarrow x=\dfrac{-1}{2}\left(\text{t/m ĐKXĐ}\right)\)
Vậy \(x=\dfrac{-1}{2}\) để phân thức nhận giá trị là -2.
a) Có: \(x^2-1=\left(x-1\right)\left(x+1\right)\)
ĐKXĐ là x ≠ 1; x ≠ -1
b) \(\dfrac{3x+3}{x^2-1}=\dfrac{3\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}=\dfrac{3}{x-1}\)
c) Theo đề ta có: \(\dfrac{3}{x-1}=2\)
\(\Rightarrow x-1=\dfrac{3}{2}\)
\(\Rightarrow x=\dfrac{5}{2}\) (T/m ĐK)
a) ĐKXĐ: \(x\notin\left\{1;-1\right\}\)
b) Ta có: \(\dfrac{3x+3}{x^2-1}\)
\(=\dfrac{3\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}\)
\(=\dfrac{3}{x-1}\)
c) Để phân thức có giá trị bằng -2 thì \(\dfrac{3}{x-1}=-2\)
\(\Leftrightarrow x-1=\dfrac{-3}{2}\)
hay \(x=\dfrac{-1}{2}\)(nhận)
Vậy: Để phân thức có giá trị bằng -2 thì \(x=\dfrac{-1}{2}\)
Cho phân thức 2 x ( x + 1 ) ( x - 2 ) . Tìm điều kiện để phân thức trên xác định.
Điều kiện để phân thức xác định là ( x + 1 )( x - 2 ) ≠ 0 ⇒ x ≠ - 1; x ≠ 2.
Bài 2: (3 điểm) Cho phân thức \(\dfrac{3x+3}{x^2-1}\)
a/ Tìm điều kiện của x để giá trị của phân thức được xác định.
b/ Tìm giá trị của x để phân thức có giá trị bằng –2 .
c/ Tìm giá trị của x để phân thức có giá trị là số nguyên.
phân thức được xác định ⇔ x2 - 1 ≠ 0 ⇔ x ≠ \(\left\{-1;1\right\}\)
\(\dfrac{3x+3}{x^2-1}=-2\)
=> 3x + 3 = -2x2 + 2
=> 2x2 + 3x + 1 = 0
=> (2x+1)(x+1) = 0
=> x = -1/2 (thỏa mãn) hoặc x = -1 (loại)
Vậy, để phân thức có giá trị bằng –2 thì x = -1/2.
\(\dfrac{3x+3}{x^2-1}\)=\(\dfrac{3\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\) (x khác -1 và x khác 1)
= \(\dfrac{3}{x-1}\)
=> Phân thức ban đầu có giá trị nguyên ⇔ 3 chia hết cho x-1
=> x-1 ∈\(\left\{-3;-1;1;3\right\}\)
=> x ∈\(\left\{-2;0;2;4\right\}\)
Vậy, để phân thức có giá trị là số nguyên.thì x ∈\(\left\{-2;0;2;4\right\}\).
a) ĐKXĐ: \(x\notin\left\{1;-1\right\}\)
b) Ta có: \(\dfrac{3x+3}{x^2-1}\)
\(=\dfrac{3\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}\)
\(=\dfrac{3}{x-1}\)
Để phân thức có giá trị bằng -2 thì \(\dfrac{3}{x-1}=-2\)
\(\Leftrightarrow x-1=-\dfrac{3}{2}\)
hay \(x=-\dfrac{1}{2}\)(thỏa ĐK)
Bài 2: (3 điểm) Cho phân thức \(\dfrac{3x+3}{x^2-1}\)
a/ Tìm điều kiện của x để giá trị của phân thức được xác định.
b/ Tìm giá trị của x để phân thức có giá trị bằng –2 .
c/ Tìm giá trị của x để phân thức có giá trị là số nguyên.
a) ĐKXĐ: \(x\notin\left\{1;-1\right\}\)
b) Ta có: \(\dfrac{3x+3}{x^2-1}\)
\(=\dfrac{3\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}\)
\(=\dfrac{3}{x-1}\)
Để phân thức có giá trị bằng -2 thì \(\dfrac{3}{x-1}=-2\)
\(\Leftrightarrow x-1=\dfrac{-3}{2}\)
hay \(x=-\dfrac{1}{2}\)
Vậy: Để phân thức có giá trị bằng -2 thì \(x=-\dfrac{1}{2}\)
c) Để phân thức có giá trị là số nguyên thì \(3⋮x-1\)
\(\Leftrightarrow x-1\inƯ\left(3\right)\)
\(\Leftrightarrow x-1\in\left\{1;-1;3;-3\right\}\)
\(\Leftrightarrow x\in\left\{2;0;4;-2\right\}\)
Kết hợp ĐKXĐ, ta được:
\(x\in\left\{2;0;4;-2\right\}\)
Vậy: Để phân thức có giá trị là số nguyên thì \(x\in\left\{2;0;4;-2\right\}\)
1.Cho biểu thức C = x³/x²-4 - x/x-2 - 2/x+2
a,tìm giá trị của biến để biểu thức được xác định
b,Tìm x để C=0
c,Tìm giá trị nguyên của x để C nhận giá trị dương
2,cho P = (2+x/2-x + 4x²/x²-4 - 2-x/2+x): x²-3x/2x²-x³
a,Tìm điều kiện của x để giá trị của P được xác định
B, rút gọn P
c,Tính giá trị P với |x-5|=2
d,Tìm x để P<0
3,cho biểu thức B = [x+1/2x-2 + 3/x²-1 - x+3/2x+2]. 4x²-4/5
a,Tìm điều kiện của x để giá trị biểu thức được xác định
b,CMR khi giá trị của biểu thức không phụ thuộc vào giá trị của biến x?
4,Cho phân thức C = 3x²-x/9x²-6x+1
a, tìm điều kiện xác định phân thức
b,tính giá trị phân thức tại x=-8
c,Tìm x để giá trị của phân thức nhận giá trị dương
1.a)\(\frac{x^3}{x^2-4}-\frac{x}{x-2}-\frac{2}{x+2}\)
\(=\frac{x^3}{\left(x+2\right)\left(x-2\right)}-\frac{x}{x-2}-\frac{2}{x+2}\)
Để biểu thức được xác định thì:\(\left(x+2\right)\left(x-2\right)\ne0\)\(\Rightarrow x\ne\pm2\)
\(\left(x+2\right)\ne0\Rightarrow x\ne-2\)
\(\left(x-2\right)\ne0\Rightarrow x\ne2\)
Vậy để biểu thức xác định thì : \(x\ne\pm2\)
b) để C=0 thì ....
1, c , bn Nguyễn Hữu Triết chưa lm xong
ta có : \(/x-5/=2\)
\(\Rightarrow\orbr{\begin{cases}x-5=2\\x-5=-2\end{cases}}\Rightarrow\orbr{\begin{cases}x=7\\x=3\end{cases}}\)
thay x = 7 vào biểu thứcC
\(\Rightarrow C=\frac{4.7^2\left(2-7\right)}{\left(7-3\right)\left(2+7\right)}=\frac{-988}{36}=\frac{-247}{9}\)KL :>...
thay x = 3 vào C
\(\Rightarrow C=\frac{4.3^2\left(2-3\right)}{\left(3-3\right)\left(3+7\right)}\)
=> ko tìm đc giá trị C tại x = 3
chết mk nhìn nhầm phần c bài 2 :
\(2,\left(\frac{2+x}{2-x}+\frac{4x^2}{x^2-4}-\frac{2-x}{2+x}\right):\frac{x^2-3x}{2x^2-x^3}\)
Để P xác định
\(\Rightarrow2-x\ne0\Rightarrow x\ne2\)
\(2+x\ne0\Rightarrow x\ne-2\)
\(x^2-4\ne0\Rightarrow x\ne0\)
\(x^2-3x\ne0\Rightarrow x\ne3\)
b, \(P=\left(\frac{2+x}{2-x}+\frac{4x^2}{\left(2+x\right)\left(2-x\right)}+\frac{2-x}{2+x}\right):\frac{x\left(x-3\right)}{x^2\left(2-x\right)}\)
\(P=\left[\frac{4+4x+x^2}{\left(2-x\right)\left(2+x\right)}-\frac{4x^2}{\left(2+x\right)\left(2-x\right)}-\frac{4-4x+x^2}{\left(2+x\right)\left(2-x\right)}\right].\frac{x\left(2-x\right)}{x-3}\)
\(P=\left[\frac{8x-4x^2}{\left(2-x\right)\left(2+x\right)}\right].\frac{x\left(2-x\right)}{x-3}=\frac{4x\left(2-x\right)}{\left(2-x\right)\left(2+x\right)}.\frac{x\left(2-x\right)}{x-3}\)
\(P=\frac{4x^2\left(2-x\right)}{\left(x-3\right)\left(2+x\right)}\)
d, ĐỂ \(p=\frac{8x^2-4x^3}{x^2-x-6}< 0\)
\(TH1:8x^2-4x^3< 0\)
\(\Rightarrow8x^2< 4x^3\)
\(\Rightarrow2< x\Rightarrow x>2\)
\(TH2:x^2-x-6< 0\Rightarrow x^2< x+6\)
Tìm điều kiện của x để phân thức sau xác định:
1) \(\dfrac{5-x}{x^2-3x}\)
2) \(\dfrac{3x}{2x+3}\)
1) \(\dfrac{5-x}{x^2-3x}=\dfrac{5-x}{x\left(x-3\right)}\left(đk:x\ne0,x\ne3\right)\)
2) \(\dfrac{3x}{2x+3}\left(đk:x\ne-\dfrac{3}{2}\right)\)
Cho phân thức
A = \(\dfrac{x^3+2x^2+x}{x^3-x}\)
a, tìm điều kiện của x để giá trị của phân thức A được xác định
b, rút gọn A
c, tính gtrị của phân thức tại x = 1, x = 2
d, tính gtrị của x để gtrị của A = 2
a: ĐKXĐ: \(x\notin\left\{0;1;-1\right\}\)
b: \(A=\dfrac{x\left(x+1\right)^2}{x\left(x+1\right)\left(x-1\right)}=\dfrac{x+1}{x-1}\)
c: Thay x=2 vào A, ta được:
\(A=\dfrac{2+1}{2-1}=3\)
d: Để A=2 thì x+1=2x-2
=>-x=-3
hay x=3(nhận)